Answer
Verified
490.2k+ views
Hint: In order to solve such type of question firstly we have to find out the probability of exactly 3 heads, probability of getting exactly 4 heads and probability of getting all three heads then we will easily get the probability of getting at least three heads using the formula $^n{C_r}{a^r}{b^{n - r}}$
Complete step-by-step answer:
We know that,
Probability of getting a head when a coin is tossed $ = $ probability of getting a tail when a coin is tossed$a = b = \dfrac{1}{2}$.
We have given that,
A coin is tossed $5$ times. Therefore $n = 5$ and probability of getting at least $3$ heads $r = 3,4,5.$
Probability of getting at least three heads$ = $ Probability of exactly 3 heads $ + $ Probability of getting exactly 4 heads$ + $ Probability of getting all three heads.
Using formula,
$^n{C_r}{a^r}{b^{n - r}} - - - - - \left( 1 \right)$
Therefore,
$^5{C_3}{\left( {\dfrac{1}{2}} \right)^3}{\left( {\dfrac{1}{2}} \right)^{5 - 3}}{ + ^5}{C_4}{\left( {\dfrac{1}{2}} \right)^4}{\left( {\dfrac{1}{2}} \right)^{5 - 4}}{ + ^5}{C_5}{\left( {\dfrac{1}{2}} \right)^5}{\left( {\dfrac{1}{2}} \right)^{5 - 5}}$
Or $^5{C_3}{\left( {\dfrac{1}{2}} \right)^5}{ + ^5}{C_4}{\left( {\dfrac{1}{2}} \right)^5}{ + ^5}{C_5}{\left( {\dfrac{1}{2}} \right)^5}$
Using formula $^n{C_r}{a^r}{b^{n - r}} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
$\left( {\dfrac{{5!}}{{3!\left( {5 - 3} \right)!}} + \dfrac{{5!}}{{4!\left( {5 - 4} \right)!}} + \dfrac{{5!}}{{5!\left( {5 - 5} \right)!}}} \right){\left( {\dfrac{1}{2}} \right)^5}$
Or $\left( {\dfrac{{5 \times 4}}{{2 \times 1}} + \dfrac{5}{1} + 1} \right){\left( {\dfrac{1}{2}} \right)^5}$
Or $\left( {10 + 5 + 1} \right){\left( {\dfrac{1}{2}} \right)^5}$
Or $\dfrac{{16}}{{32}} = \dfrac{1}{2}$
Therefore, $x = 1$
Note: Whenever we face these types of questions the key concept is that simply we will understand the given part to calculate the value of $a,b,n,r$. Then we have to substitute this in this formula $^n{C_r}{a^r}{b^{n - r}}$ and we will get our desired answer.
Complete step-by-step answer:
We know that,
Probability of getting a head when a coin is tossed $ = $ probability of getting a tail when a coin is tossed$a = b = \dfrac{1}{2}$.
We have given that,
A coin is tossed $5$ times. Therefore $n = 5$ and probability of getting at least $3$ heads $r = 3,4,5.$
Probability of getting at least three heads$ = $ Probability of exactly 3 heads $ + $ Probability of getting exactly 4 heads$ + $ Probability of getting all three heads.
Using formula,
$^n{C_r}{a^r}{b^{n - r}} - - - - - \left( 1 \right)$
Therefore,
$^5{C_3}{\left( {\dfrac{1}{2}} \right)^3}{\left( {\dfrac{1}{2}} \right)^{5 - 3}}{ + ^5}{C_4}{\left( {\dfrac{1}{2}} \right)^4}{\left( {\dfrac{1}{2}} \right)^{5 - 4}}{ + ^5}{C_5}{\left( {\dfrac{1}{2}} \right)^5}{\left( {\dfrac{1}{2}} \right)^{5 - 5}}$
Or $^5{C_3}{\left( {\dfrac{1}{2}} \right)^5}{ + ^5}{C_4}{\left( {\dfrac{1}{2}} \right)^5}{ + ^5}{C_5}{\left( {\dfrac{1}{2}} \right)^5}$
Using formula $^n{C_r}{a^r}{b^{n - r}} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
$\left( {\dfrac{{5!}}{{3!\left( {5 - 3} \right)!}} + \dfrac{{5!}}{{4!\left( {5 - 4} \right)!}} + \dfrac{{5!}}{{5!\left( {5 - 5} \right)!}}} \right){\left( {\dfrac{1}{2}} \right)^5}$
Or $\left( {\dfrac{{5 \times 4}}{{2 \times 1}} + \dfrac{5}{1} + 1} \right){\left( {\dfrac{1}{2}} \right)^5}$
Or $\left( {10 + 5 + 1} \right){\left( {\dfrac{1}{2}} \right)^5}$
Or $\dfrac{{16}}{{32}} = \dfrac{1}{2}$
Therefore, $x = 1$
Note: Whenever we face these types of questions the key concept is that simply we will understand the given part to calculate the value of $a,b,n,r$. Then we have to substitute this in this formula $^n{C_r}{a^r}{b^{n - r}}$ and we will get our desired answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE