Answer

Verified

458.4k+ views

**Hint:**Here it is said that from the class of seven students five students go on a picnic. So, to find the students here we will use the concept of combinations to make different groups of students.

**Complete step-by-step solution:**

Now, according to the question, a group of five students go on a picnic every Saturday. Now, as there are 4 boys so there is at least one girl who is going on a picnic. Now, every Saturday a different group is sent so we have to find all the different groups. Also, to every girl on a picnic a doll is given so, by calculating the groups we can find the total number of dolls. Now the groups contain students as follows.

1). 4 boys and 1 girl

2). 3 boys and 2 girls

3). 2 boys and 3 girls

No other combination is possible according to the question. Now we have to find the total number of combinations with each group. We will use the formula ${}^n{C_r}$ = $\dfrac{{n!}}{{r!(n - r)!}}$ to find the number of combinations.

Now for group (1), all 4 boys are selected and 1 from 3 girls is to be selected. So,

Number of selections = ${}^4{C_4} \times {}^3{C_1}$ = 1 x 3 = 3 combinations.

So, for group (1), there are 3 combinations. Also, there is one girl in group (1) so, number of dolls in group (1) = 3 x 1 = 3 dolls.

Now, for group (2), 3 boys are to be selected from 4 boys and 2 girls from 3 girls are to be selected. So, the number of selections = ${}^4{C_3} \times {}^3{C_2}$ = 4 x 3 = 12 combinations.

So, according to the question , the number of dolls in group (2) = 12 x 2 = 24 dolls.

For group (3), 2 boys are to be selected from 4 boys and all 3 girls are selected. So,

Number of selections = ${}^4{C_2} \times {}^3{C_3}$ = 6 x 1 = 6 combinations.

So, according to the question number of dolls in group (3) = 6 x 3 = 18 dolls.

So, the total number of dolls that girls got = 3 + 24 + 18 = 45 dolls.

**So, option (B) is correct.**

**Note:**To solve such problems it is necessary that you make proper combinations. The main mistake students do in such types of problems is that they use the formula of permutation instead of using the formula of combination for finding total number of selections. Read the question properly to avoid such mistakes.

Recently Updated Pages

When people say No pun intended what does that mea class 8 english CBSE

Name the states which share their boundary with Indias class 9 social science CBSE

Give an account of the Northern Plains of India class 9 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Advantages and disadvantages of science

10 examples of friction in our daily life

Trending doubts

Which are the Top 10 Largest Countries of the World?

One cusec is equal to how many liters class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

What organs are located on the left side of your body class 11 biology CBSE