# A cistern, internally measuring $150cm \times 120 \times 110cm$, has $129600c{m^3}$of water in it. Porous bricks are placed in the water until the cistern is full to the brim. Each brick absorbs one-seventeenth of its own volume of water. How many bricks can be put in without overflowing the water, each brick being $22.5cm \times 7.5cm \times 6.5cm$.

Last updated date: 18th Mar 2023

•

Total views: 306.6k

•

Views today: 4.85k

Answer

Verified

306.6k+ views

Hint: The bricks are porous. So, they will absorb some water. The empty space left in the cistern will be covered by the volume of the brick.

Dimensions of the cistern is given as $150cm \times 120 \times 110cm$.

Volume of the cistern $ = 150 \times 120 \times 110 = 1980000c{m^3}$

Volume of water filled in the cistern $ = 129600c{m^3}$

Empty space left in the cistern $ = 1980000 - 129600 = 1850400c{m^3}$

Dimensions of brick are given as $22.5cm \times 7.5cm \times 6.5cm$.

Volume of each brick $ = 22.5 \times 7.5 \times 6.5 = 1096.875c{m^3}$

Let there be $x$ number of bricks that can be placed in the cistern just to avoid overflow. Then,

Total volume of all the bricks $ = 1096.875x$

It is also given that each brick absorbs one-seventeenth of its own volume of water. Then we hane:

Total volume of water absorbed by all the bricks $ = \dfrac{1}{{17}} \times 1096.875x$

This will increase the empty spaces in the cistern. So we have:

Total empty space left in the cistern$ = 1850400 + \dfrac{1}{{17}} \times 1096.875x$

This empty space will be capitalized by the space taken by the bricks themselves. So, we have:

$

\Rightarrow 1850400 + \dfrac{1}{{17}} \times 1096.875x = 1096.875x, \\

\Rightarrow 1096.875x - \dfrac{1}{{17}} \times 1096.875x = 1850400, \\

\Rightarrow \dfrac{{16}}{{17}} \times 1096.875x = 1850400, \\

\Rightarrow x = \dfrac{{17 \times 115650}}{{1096.875}}, \\

\Rightarrow x = 1792.41 \\

$

Therefore, a maximum of 1792 bricks can be placed in the cistern without overflowing the water.

Note: Above, we are getting the value of $x$as 1792.41. The number of bricks can only be integer.

If we take 1793 as the total number of bricks, this will result in some amount of water overflow because 1793 is greater than 1792.41. That’s why we can take 1792 as the maximum number of bricks.

Dimensions of the cistern is given as $150cm \times 120 \times 110cm$.

Volume of the cistern $ = 150 \times 120 \times 110 = 1980000c{m^3}$

Volume of water filled in the cistern $ = 129600c{m^3}$

Empty space left in the cistern $ = 1980000 - 129600 = 1850400c{m^3}$

Dimensions of brick are given as $22.5cm \times 7.5cm \times 6.5cm$.

Volume of each brick $ = 22.5 \times 7.5 \times 6.5 = 1096.875c{m^3}$

Let there be $x$ number of bricks that can be placed in the cistern just to avoid overflow. Then,

Total volume of all the bricks $ = 1096.875x$

It is also given that each brick absorbs one-seventeenth of its own volume of water. Then we hane:

Total volume of water absorbed by all the bricks $ = \dfrac{1}{{17}} \times 1096.875x$

This will increase the empty spaces in the cistern. So we have:

Total empty space left in the cistern$ = 1850400 + \dfrac{1}{{17}} \times 1096.875x$

This empty space will be capitalized by the space taken by the bricks themselves. So, we have:

$

\Rightarrow 1850400 + \dfrac{1}{{17}} \times 1096.875x = 1096.875x, \\

\Rightarrow 1096.875x - \dfrac{1}{{17}} \times 1096.875x = 1850400, \\

\Rightarrow \dfrac{{16}}{{17}} \times 1096.875x = 1850400, \\

\Rightarrow x = \dfrac{{17 \times 115650}}{{1096.875}}, \\

\Rightarrow x = 1792.41 \\

$

Therefore, a maximum of 1792 bricks can be placed in the cistern without overflowing the water.

Note: Above, we are getting the value of $x$as 1792.41. The number of bricks can only be integer.

If we take 1793 as the total number of bricks, this will result in some amount of water overflow because 1793 is greater than 1792.41. That’s why we can take 1792 as the maximum number of bricks.

Recently Updated Pages

If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE