
A circular coil of radius R carries an electric current. The magnetic field due to the coil at a point on the axis of the coil located at a distance r from the center of the coil, such that $r >> R$, varies as
$A. \dfrac {1}{r}$
$B. \dfrac { 1 }{ { r }^{ { 3 }/{ 2 } } }$
$C. \dfrac { 1 }{ { r }^{ 2 } }$
$D. \dfrac { 1 }{ { r }^{ 3 } }$
Answer
562.2k+ views
Hint: To solve this problem, use Biot-Savart law. Biot-Savart law helps to determine magnetic fields produced by an electric current. Use the formula for Biot-Savart law for the magnetic field at a point on the axis of the loop. Substitute the given condition which is given as $r >> R$, in the above-mentioned formula. Evaluate the expression and find the relationship between magnetic field B and distance r. This will give the variation of magnetic field at a point on the axis of the coil with distance r.
Formula used: $B=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { 2\pi I{ R }^{ 2 } }{ { \left( { r }^{ 2 }+{ R }^{ 2 } \right) }^{ { 3 }/{ 2 } } }$
Complete step by step answer:
Magnetic field at a point on the axis of a loop is given by,
$B=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { 2\pi I{ R }^{ 2 } }{ { \left( { r }^{ 2 }+{ R }^{ 2 } \right) }^{ { 3 }/{ 2 } } }$ …(1)
Area of a circular loop is given by,
$A= \pi {R}^{2}$ …(2)
Substituting equation. (2) in equation. (1) we get,
$B=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { 2IA }{ { \left( { r }^{ 2 }+{ R }^{ 2 } \right) }^{ { 3 }/{ 2 } } } $
$\Rightarrow B=\dfrac { { \mu }_{ 0 } }{ 2\pi } \dfrac { IA }{ { \left( { r }^{ 2 }+{ R }^{ 2 } \right) }^{ { 3 }/{ 2 } } } $ …(3)
When $r>>R$, equation. (3) becomes,
$B=\dfrac { { \mu }_{ 0 } }{ 2\pi } \dfrac { IA }{ { \left( { r }^{ 2 } \right) }^{ { 3 }/{ 2 } } } $
$\Rightarrow B=\dfrac { { \mu }_{ 0 } }{ 2\pi } \dfrac { IA }{ { r }^{ 3 } } $ …(4)
From the equation (4), we can infer that the magnetic field is proportional to the cube of the distance r.
$\Rightarrow B\propto \dfrac { 1 }{ { r }^{ 3 } } $
Thus, the magnetic field due to the coil at a point on the axis of the coil located at a distance r from the center of the coil, such that $r >> R$, varies as $\dfrac { 1 }{ { r }^{ 3 } }$.
So, the correct answer is “Option D”.
Note: Students should remember the Biot-Savart law, it helps to solve these types of problems. If we want to find the magnetic field at the center of the current loop then equation. (1) can be used. Substituting r=0 will give the expression for the magnetic field at the center of the current loop. At the center of the coil, the magnetic field will be uniform, As the distance of the point increases from the center of the coil, the magnetic field decreases.
Formula used: $B=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { 2\pi I{ R }^{ 2 } }{ { \left( { r }^{ 2 }+{ R }^{ 2 } \right) }^{ { 3 }/{ 2 } } }$
Complete step by step answer:
Magnetic field at a point on the axis of a loop is given by,
$B=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { 2\pi I{ R }^{ 2 } }{ { \left( { r }^{ 2 }+{ R }^{ 2 } \right) }^{ { 3 }/{ 2 } } }$ …(1)
Area of a circular loop is given by,
$A= \pi {R}^{2}$ …(2)
Substituting equation. (2) in equation. (1) we get,
$B=\dfrac { { \mu }_{ 0 } }{ 4\pi } \dfrac { 2IA }{ { \left( { r }^{ 2 }+{ R }^{ 2 } \right) }^{ { 3 }/{ 2 } } } $
$\Rightarrow B=\dfrac { { \mu }_{ 0 } }{ 2\pi } \dfrac { IA }{ { \left( { r }^{ 2 }+{ R }^{ 2 } \right) }^{ { 3 }/{ 2 } } } $ …(3)
When $r>>R$, equation. (3) becomes,
$B=\dfrac { { \mu }_{ 0 } }{ 2\pi } \dfrac { IA }{ { \left( { r }^{ 2 } \right) }^{ { 3 }/{ 2 } } } $
$\Rightarrow B=\dfrac { { \mu }_{ 0 } }{ 2\pi } \dfrac { IA }{ { r }^{ 3 } } $ …(4)
From the equation (4), we can infer that the magnetic field is proportional to the cube of the distance r.
$\Rightarrow B\propto \dfrac { 1 }{ { r }^{ 3 } } $
Thus, the magnetic field due to the coil at a point on the axis of the coil located at a distance r from the center of the coil, such that $r >> R$, varies as $\dfrac { 1 }{ { r }^{ 3 } }$.
So, the correct answer is “Option D”.
Note: Students should remember the Biot-Savart law, it helps to solve these types of problems. If we want to find the magnetic field at the center of the current loop then equation. (1) can be used. Substituting r=0 will give the expression for the magnetic field at the center of the current loop. At the center of the coil, the magnetic field will be uniform, As the distance of the point increases from the center of the coil, the magnetic field decreases.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

