A circle circumscribed a rectangle with sides 16cm and 12cm. What is the area of the circle?
A. \[48\pi \]square cm.
B. \[50\pi \]square cm.
C. \[100\pi \]square cm.
D. \[200\pi \]square cm.
Answer
Verified
402.6k+ views
Hint: In this problem, we are given that a circle circumscribed a rectangle with sides 16cm and 12cm, we have to find the area of the circle. We can first draw a suitable diagram for the given measurements. We know that area of the circle formula is \[\pi {{r}^{2}}\], where r is the radius. We can find the value of r where We can see that the diagonal of the rectangle will be the diameter of the circle. Using Pythagoras theorem we can find the radius value and substitute in the area formula to get the area value.
Complete step by step answer:
Here we have to find the area of a circle which circumscribes a rectangle with sides 16 cm and 12cm.
We can now draw the diagram.
We can see that the diagonal of the rectangle = the diameter of the circle = 2r.
We can now find the diagonal of the rectangle using the Pythagoras formula,
\[\Rightarrow {{\left( 2r \right)}^{2}}={{\left( 16 \right)}^{2}}+{{\left( 12 \right)}^{2}}\]
We can now simplify the above step, we get
\[\begin{align}
& \Rightarrow 4{{r}^{2}}=256+144=400 \\
& \Rightarrow {{r}^{2}}=100 \\
& \Rightarrow r=10cm \\
\end{align}\]
The radius of the circle is 10cm.
We can now substitute the radius in the formula for area of circle \[\pi {{r}^{2}}\], we get
Area of the circle = \[\pi \times {{\left( 10 \right)}^{2}}=100\pi c{{m}^{2}}\].
So, the correct answer is “Option C”.
Note: We should know that if a circle circumscribes a rectangle, then the diameter of the circle is the diagonal of the rectangle, where the diagonal of the rectangle = the diameter of the circle = 2r. We should remember that, the formula to find the area of the circle is \[\pi {{r}^{2}}\].
Complete step by step answer:
Here we have to find the area of a circle which circumscribes a rectangle with sides 16 cm and 12cm.
We can now draw the diagram.
We can see that the diagonal of the rectangle = the diameter of the circle = 2r.
We can now find the diagonal of the rectangle using the Pythagoras formula,
\[\Rightarrow {{\left( 2r \right)}^{2}}={{\left( 16 \right)}^{2}}+{{\left( 12 \right)}^{2}}\]
We can now simplify the above step, we get
\[\begin{align}
& \Rightarrow 4{{r}^{2}}=256+144=400 \\
& \Rightarrow {{r}^{2}}=100 \\
& \Rightarrow r=10cm \\
\end{align}\]
The radius of the circle is 10cm.
We can now substitute the radius in the formula for area of circle \[\pi {{r}^{2}}\], we get
Area of the circle = \[\pi \times {{\left( 10 \right)}^{2}}=100\pi c{{m}^{2}}\].
So, the correct answer is “Option C”.
Note: We should know that if a circle circumscribes a rectangle, then the diameter of the circle is the diagonal of the rectangle, where the diagonal of the rectangle = the diameter of the circle = 2r. We should remember that, the formula to find the area of the circle is \[\pi {{r}^{2}}\].
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Computer Science: Engaging Questions & Answers for Success
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
Assertion The planet Neptune appears blue in colour class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE