
A charged ball B hangs from a silk thread S which makes an angle \[\theta \] with a large charged conducting sheet P as shown in the given figure. The surface charge density \[\sigma \] of the sheet is proportional to:
A. \[\cos \theta \]
B. \[\cot \theta \]
C. \[\sin \theta \]
D. \[\tan \theta \]

Answer
474k+ views
Hint: Draw a free body diagram indicating the forces acting on the charged ball. Equate the forces and use the relation between electric field and permittivity of the medium.
Formula used:
\[{F_e} = qE\]
Here, q is the charge of on the ball and E is the electric field.
Complete step by step answer:
The charged ball is placed in a uniform electric field experiences an electric force of magnitude,
\[{F_e} = qE\]
Here, q is the charge of on the ball and E is the electric field.Draw a free body diagram of the forces acting on the charged ball as shown in the figure below,
Balance the forces acting on the charged ball in the vertical direction as follows,
\[T\cos \theta = mg\] ……. (1)
Balance the forces acting on the charged ball in the horizontal direction as follows,
\[T\sin \theta = {F_e}\]
\[ \Rightarrow T\sin \theta = qE\] ……. (2)
Divide equation (2) by equation (1). \[\dfrac{{T\sin \theta }}{{T\cos \theta }} = \dfrac{{qE}}{{mg}}\]
\[ \Rightarrow \tan \theta = \left( {\dfrac{q}{{mg}}} \right)E\] ……. (3)
We know that the electric field is the ratio of surface charge density \[\sigma \]and permittivity of the medium \[\varepsilon \].
\[E = \dfrac{\sigma }{\varepsilon }\]
Substitute \[E = \dfrac{\sigma }{\varepsilon }\] in equation (3).
\[\left( {\dfrac{q}{{mg}}} \right)\dfrac{\sigma }{\varepsilon } = \tan \theta \]
\[ \Rightarrow \sigma = \left( {\dfrac{{\varepsilon mg}}{q}} \right)\tan \theta \]
\[\therefore \sigma \propto \tan \theta \]
So, the correct answer is “Option D”.
Note:
Specify the correct directions of forces acting on the charged ball whether they are along the positive direction of the y-axis or along the negative direction of the y-axis and the same for the x-axis. Here, the electric force should be along the positive direction of the x-axis.
Formula used:
\[{F_e} = qE\]
Here, q is the charge of on the ball and E is the electric field.
Complete step by step answer:
The charged ball is placed in a uniform electric field experiences an electric force of magnitude,
\[{F_e} = qE\]
Here, q is the charge of on the ball and E is the electric field.Draw a free body diagram of the forces acting on the charged ball as shown in the figure below,

Balance the forces acting on the charged ball in the vertical direction as follows,
\[T\cos \theta = mg\] ……. (1)
Balance the forces acting on the charged ball in the horizontal direction as follows,
\[T\sin \theta = {F_e}\]
\[ \Rightarrow T\sin \theta = qE\] ……. (2)
Divide equation (2) by equation (1). \[\dfrac{{T\sin \theta }}{{T\cos \theta }} = \dfrac{{qE}}{{mg}}\]
\[ \Rightarrow \tan \theta = \left( {\dfrac{q}{{mg}}} \right)E\] ……. (3)
We know that the electric field is the ratio of surface charge density \[\sigma \]and permittivity of the medium \[\varepsilon \].
\[E = \dfrac{\sigma }{\varepsilon }\]
Substitute \[E = \dfrac{\sigma }{\varepsilon }\] in equation (3).
\[\left( {\dfrac{q}{{mg}}} \right)\dfrac{\sigma }{\varepsilon } = \tan \theta \]
\[ \Rightarrow \sigma = \left( {\dfrac{{\varepsilon mg}}{q}} \right)\tan \theta \]
\[\therefore \sigma \propto \tan \theta \]
So, the correct answer is “Option D”.
Note:
Specify the correct directions of forces acting on the charged ball whether they are along the positive direction of the y-axis or along the negative direction of the y-axis and the same for the x-axis. Here, the electric force should be along the positive direction of the x-axis.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
What organs are located on the left side of your body class 11 biology CBSE

The combining capacity of an element is known as i class 11 chemistry CBSE

Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE

Define least count of vernier callipers How do you class 11 physics CBSE

Distinguish between Mitosis and Meiosis class 11 biology CBSE

Number of oneone functions from A to B where nA 4 and class 11 maths CBSE
