A charge particle of mass m and charge q is released from rest in an electric of constant magnitude E. The kinetic energy of the particle after time t is
$\begin{align}
& \text{a)}\dfrac{{{\text{E}}^{\text{2}}}{{\text{q}}^{\text{2}}}{{\text{t}}^{\text{2}}}}{\text{2m}} \\
& \text{b)}\dfrac{{{\text{E}}^{\text{2}}}{{\text{t}}^{\text{2}}}}{\text{mq}} \\
& \text{c)}\dfrac{\text{Eqm}}{\text{2t}} \\
& \text{d)}\dfrac{\text{E}{{\text{q}}^{\text{2}}}\text{m}}{\text{2}{{\text{t}}^{\text{2}}}} \\
\end{align}$
Answer
Verified
480k+ views
Hint: The above charge is kept in a constant electric field. Hence it will experience a constant force. Hence we can obtain the acceleration of the charge in the electric field. Further we will use this acceleration in the first kinematic equation and determine its velocity at any instant of time t. Since kinetic energy depends on the mass of the body (does not change with time when charge is kept in the electric field)and velocity, the velocity which we obtained above can be used to determine the kinetic energy.
Complete step by step answer:
The force on the charge in the above constant electric field is given by $\overline{F}=\overline{E}q$ where E is the electric field in which the charge is kept and q is the charge initially at rest let us say at time t=0. Since the electric field is constant the force F will not change with time. Hence as soon as the charge is introduced in the electric field initially at rest will undergo a constant acceleration. Since force equals mass times acceleration the magnitude of acceleration i.e. $\overline{a}=\dfrac{\overline{F}}{m}$, F is the constant force experienced by the charge and m is the mass of the charge. Now let us substitute the force due to the electric field in the above equation. Hence acceleration of the charge is given by $\overline{a}=\dfrac{\overline{E}q}{m}$.
Now let us use the first kinematic equation to determine the velocity of the charge at any instant time t for anybody under acceleration.
$\text{V- U=}\overline{\text{a}}\text{t}$ where V is the velocity of any body at time t, U is the initial velocity of any body at time t=0, a is the acceleration of the body under a constant force.
Now let substitute acceleration of the charge in first kinematic equation,
$\text{V- U=}\dfrac{\overline{E}q}{m}\text{t}$, now since U=0 i.e. initially the charge is at rest, the adjacent equation becomes
$\text{V=}\dfrac{\overline{E}q}{m}\text{t}$ is the velocity of the charge at any time t. Now let us substitute this in expression of kinetic energy of an object in motion. Mathematically kinetic energy of any body is given by $\text{K}\text{.E}=\dfrac{1}{2}m{{v}^{2}}$ where m is the mass of the body and v is the velocity of the object having kinetic energy at that particular instant of time.
Now let us substitute the instantaneous velocity of the charge obtained in the above expression of kinetic energy.
$\text{K}\text{.E}=\dfrac{1}{2}m{{v}^{2}}$
$\text{K}\text{.E}=\dfrac{1}{2}m{{\left( \dfrac{\overline{E}q}{m}\text{t} \right)}^{2}}=\dfrac{{{E}^{2}}{{q}^{2}}{{t}^{2}}}{2m}\text{J}$
So, the correct answer is “Option A”.
Note: It is not given in the question about the nature of the charge. If the charge is positive then the charge will move towards the direction of the applied electric field. If the charge is negative then it will move in the direction opposite to the applied electric field.
Complete step by step answer:
The force on the charge in the above constant electric field is given by $\overline{F}=\overline{E}q$ where E is the electric field in which the charge is kept and q is the charge initially at rest let us say at time t=0. Since the electric field is constant the force F will not change with time. Hence as soon as the charge is introduced in the electric field initially at rest will undergo a constant acceleration. Since force equals mass times acceleration the magnitude of acceleration i.e. $\overline{a}=\dfrac{\overline{F}}{m}$, F is the constant force experienced by the charge and m is the mass of the charge. Now let us substitute the force due to the electric field in the above equation. Hence acceleration of the charge is given by $\overline{a}=\dfrac{\overline{E}q}{m}$.
Now let us use the first kinematic equation to determine the velocity of the charge at any instant time t for anybody under acceleration.
$\text{V- U=}\overline{\text{a}}\text{t}$ where V is the velocity of any body at time t, U is the initial velocity of any body at time t=0, a is the acceleration of the body under a constant force.
Now let substitute acceleration of the charge in first kinematic equation,
$\text{V- U=}\dfrac{\overline{E}q}{m}\text{t}$, now since U=0 i.e. initially the charge is at rest, the adjacent equation becomes
$\text{V=}\dfrac{\overline{E}q}{m}\text{t}$ is the velocity of the charge at any time t. Now let us substitute this in expression of kinetic energy of an object in motion. Mathematically kinetic energy of any body is given by $\text{K}\text{.E}=\dfrac{1}{2}m{{v}^{2}}$ where m is the mass of the body and v is the velocity of the object having kinetic energy at that particular instant of time.
Now let us substitute the instantaneous velocity of the charge obtained in the above expression of kinetic energy.
$\text{K}\text{.E}=\dfrac{1}{2}m{{v}^{2}}$
$\text{K}\text{.E}=\dfrac{1}{2}m{{\left( \dfrac{\overline{E}q}{m}\text{t} \right)}^{2}}=\dfrac{{{E}^{2}}{{q}^{2}}{{t}^{2}}}{2m}\text{J}$
So, the correct answer is “Option A”.
Note: It is not given in the question about the nature of the charge. If the charge is positive then the charge will move towards the direction of the applied electric field. If the charge is negative then it will move in the direction opposite to the applied electric field.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
State the laws of reflection of light
What is the chemical name of Iron class 11 chemistry CBSE