Answer

Verified

451.2k+ views

Hint: The question is related to the linear equation in three variables. Try to make three equations using the information given in the problem statement and solve them simultaneously.

Complete step-by-step answer:

In the question, the amount given that is changed is \[Rs.960\] in the form of $1$ rupee, $2$ rupee , and $5$ rupee coins. It is also given that the total number of coins is $300$ . It is also given that if the number of $1$ rupee and $2$ rupee coins are interchanged, the value comes down by $Rs.40$ . So, we will consider $x$ as the number of $1$ rupee coins , $y$ as the number of $2$ rupee coins, and $z$ as the number of $5$ rupee coins.

Now, in the first case, it is given that a sum of $Rs.960$ is changed in the form of $1$ rupee, $2$ rupee , and $5$ rupee coins. So, the amount in the form of $1$ rupee coins is equal to $1\times x=Rs.x$ . Also, the amount in the form of $2$ rupee coins $2\times y=Rs.2y$ . And, the amount in the form of $5$ rupee coins $5\times z=Rs.5z$ . So, the total amount will be $Rs.\left( x+2y+5z \right)$ . But it is given that the total amount changed is \[Rs.960\]. So. $x+2y+5z=960..........(i)$

Now, we have considered $x$ as the number of $1$ rupee coins, $y$ as the number of $2$ rupee coins, and $z$ as the number of $5$ rupee coins. So, the total number of coins will be equal to $x+y+z$ . But it is given that the total number of coins is equal to $300$. So, $x+y+z=300.....(ii)$

Now, it is given that if the number of $1$ rupee and $2$ rupee coins are interchanged, the value comes down by $Rs.40$. So, $y+2x+5z=920.....(iii)$

Now, we will solve the linear equations to find the values of $x$ , $y$ and $z$ .

From equation$(ii)$ , we have $x+y+z=300$

$\Rightarrow z=300-x-y$

On substituting $z=300-x-y$ in equation$(i)$ , we get

$x+2y+5\left( 300-x-y \right)=960$

$\Rightarrow x+2y+1500-5x-5y=960$

$\Rightarrow 1500-960=4x+3y$

$\Rightarrow 540=4x+3y$

$\Rightarrow x=\dfrac{540-3y}{4}$

Now, substituting $x=\dfrac{540-3y}{4}$ in $z=300-x-y$, we get:

$z=300-\dfrac{540-3y}{4}-y$

\[\Rightarrow z=\dfrac{1200-540+3y-4y}{4}\]

\[\Rightarrow z=\dfrac{660-y}{4}\]

Now, substituting $x=\dfrac{540-3y}{4}$ and \[z=\dfrac{660-y}{4}\] in equation $(iii)$ , we get:

\[2\left( \dfrac{540-3y}{4} \right)+y+5\left( \dfrac{660-y}{4} \right)=920\]

\[\Rightarrow \dfrac{1080-6y}{4}+y+\dfrac{3300-5y}{4}=920\]

\[\Rightarrow \dfrac{1080-6y+4y+3300-5y}{4}=920\]

\[\Rightarrow 4380-7y=3680\]

\[\Rightarrow 7y=4380-3680=700\]

\[\Rightarrow y=100\]

Now, we need to find the number of $5$ rupee coins, i.e. we need to find the value of $z$ .

Substituting $y=100$ in \[z=\dfrac{660-y}{4}\] , we get:

$z=\dfrac{660-100}{4}=\dfrac{560}{4}=140$

Hence, the number of $5$ rupee coins is $140$ . So, option B, is the correct option.

Note: While solving the equations, make sure that the substitutions are done correctly and no sign mistakes are present. Sign mistakes can cause the final answer to be wrong.

Complete step-by-step answer:

In the question, the amount given that is changed is \[Rs.960\] in the form of $1$ rupee, $2$ rupee , and $5$ rupee coins. It is also given that the total number of coins is $300$ . It is also given that if the number of $1$ rupee and $2$ rupee coins are interchanged, the value comes down by $Rs.40$ . So, we will consider $x$ as the number of $1$ rupee coins , $y$ as the number of $2$ rupee coins, and $z$ as the number of $5$ rupee coins.

Now, in the first case, it is given that a sum of $Rs.960$ is changed in the form of $1$ rupee, $2$ rupee , and $5$ rupee coins. So, the amount in the form of $1$ rupee coins is equal to $1\times x=Rs.x$ . Also, the amount in the form of $2$ rupee coins $2\times y=Rs.2y$ . And, the amount in the form of $5$ rupee coins $5\times z=Rs.5z$ . So, the total amount will be $Rs.\left( x+2y+5z \right)$ . But it is given that the total amount changed is \[Rs.960\]. So. $x+2y+5z=960..........(i)$

Now, we have considered $x$ as the number of $1$ rupee coins, $y$ as the number of $2$ rupee coins, and $z$ as the number of $5$ rupee coins. So, the total number of coins will be equal to $x+y+z$ . But it is given that the total number of coins is equal to $300$. So, $x+y+z=300.....(ii)$

Now, it is given that if the number of $1$ rupee and $2$ rupee coins are interchanged, the value comes down by $Rs.40$. So, $y+2x+5z=920.....(iii)$

Now, we will solve the linear equations to find the values of $x$ , $y$ and $z$ .

From equation$(ii)$ , we have $x+y+z=300$

$\Rightarrow z=300-x-y$

On substituting $z=300-x-y$ in equation$(i)$ , we get

$x+2y+5\left( 300-x-y \right)=960$

$\Rightarrow x+2y+1500-5x-5y=960$

$\Rightarrow 1500-960=4x+3y$

$\Rightarrow 540=4x+3y$

$\Rightarrow x=\dfrac{540-3y}{4}$

Now, substituting $x=\dfrac{540-3y}{4}$ in $z=300-x-y$, we get:

$z=300-\dfrac{540-3y}{4}-y$

\[\Rightarrow z=\dfrac{1200-540+3y-4y}{4}\]

\[\Rightarrow z=\dfrac{660-y}{4}\]

Now, substituting $x=\dfrac{540-3y}{4}$ and \[z=\dfrac{660-y}{4}\] in equation $(iii)$ , we get:

\[2\left( \dfrac{540-3y}{4} \right)+y+5\left( \dfrac{660-y}{4} \right)=920\]

\[\Rightarrow \dfrac{1080-6y}{4}+y+\dfrac{3300-5y}{4}=920\]

\[\Rightarrow \dfrac{1080-6y+4y+3300-5y}{4}=920\]

\[\Rightarrow 4380-7y=3680\]

\[\Rightarrow 7y=4380-3680=700\]

\[\Rightarrow y=100\]

Now, we need to find the number of $5$ rupee coins, i.e. we need to find the value of $z$ .

Substituting $y=100$ in \[z=\dfrac{660-y}{4}\] , we get:

$z=\dfrac{660-100}{4}=\dfrac{560}{4}=140$

Hence, the number of $5$ rupee coins is $140$ . So, option B, is the correct option.

Note: While solving the equations, make sure that the substitutions are done correctly and no sign mistakes are present. Sign mistakes can cause the final answer to be wrong.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Establish a relation between electric current and drift class 12 physics CBSE

Guru Purnima speech in English in 100 words class 7 english CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Copper is not used as potentiometer wire because class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE