A carnot engine, having an efficiency of $\dfrac{1}{10}$ as heat engine, is used as a refrigerator. If the work done on the system is $10J$, the amount of energy absorbed from the reservoir at low temperature is
$A)\text{ }99J$
$B)\text{ }90J$
$C)\text{ 1}J$
$D)\text{ 100}J$
Answer
Verified
476.4k+ views
Hint: This problem can be solved by using the direct formula for the efficiency of a refrigerator in terms of the heat absorbed from the reservoir at low temperature and the work done on the refrigerator. Also, the efficiency of a refrigerator can be written in terms of its efficiency when used as a heat engine.
Formula used: ${{\eta }_{f}}=\dfrac{1-{{\eta }_{e}}}{{{\eta }_{e}}}$
${{\eta }_{f}}=\dfrac{{{Q}_{2}}}{W}$
Complete step by step answer:
Let us write the formula for the efficiency of a refrigerator in terms of the heat energy absorbed from the reservoir at low temperature and the work done on the system.
The efficiency ${{\eta }_{f}}$ of a refrigerator when ${{Q}_{2}}$ amount of heat energy is taken from the reservoir at low temperature and $W$ amount of work is done on the system is given as
${{\eta }_{f}}=\dfrac{{{Q}_{2}}}{W}$ --(1)
Also, the efficiency ${{\eta }_{f}}$ of a refrigerator in terms of its efficiency ${{\eta }_{e}}$ when used as a heat engine is given by
${{\eta }_{f}}=\dfrac{1-{{\eta }_{e}}}{{{\eta }_{e}}}$ --(2)
Now, let us analyze the question.
The work done on a refrigerator system is $W=10J$.
The efficiency of the refrigerator when used as a heat engine is ${{\eta }_{e}}=\dfrac{1}{10}$.
Let the efficiency of the refrigerator be ${{\eta }_{f}}$.
Let the amount of heat energy absorbed from the reservoir at low temperature be ${{Q}_{2}}$.
Therefore, using (1), we get
${{\eta }_{f}}=\dfrac{{{Q}_{2}}}{W}$ --(3)
Also, using (2) we get
${{\eta }_{f}}=\dfrac{1-{{\eta }_{e}}}{{{\eta }_{e}}}$ --(4)
Equating (3) and (4), we get
$\dfrac{{{Q}_{2}}}{W}=\dfrac{1-{{\eta }_{e}}}{{{\eta }_{e}}}$
Putting the values of the variables in the above equation, we get
$\dfrac{{{Q}_{2}}}{10}=\dfrac{1-\dfrac{1}{10}}{\dfrac{1}{10}}=\dfrac{\dfrac{10-1}{10}}{\dfrac{1}{10}}=\dfrac{\dfrac{9}{10}}{\dfrac{1}{10}}=9$
$\therefore {{Q}_{2}}=9\times 10=90J$
Therefore, we have got the heat absorbed from the reservoir at low temperature as $90J$.
So, the correct answer is “Option B”.
Note: The relation between the efficiency of a refrigerator in terms of the efficiency when used as a heat engine comes from the fact that a heat engine and a refrigerator are essentially reverse processes of each other. In a heat engine, heat is taken from a reservoir at high temperature to do some work and then the rest is dumped into a reservoir at low temperature. On the other hand in a refrigerator, the reverse happens. Heat is taken from a reservoir at low temperature, some work is done upon the system and the heat is released into a reservoir at high temperature. From this knowledge, the efficiency of a heat engine can be written in terms of the efficiency when used as a refrigerator and vice versa.
Formula used: ${{\eta }_{f}}=\dfrac{1-{{\eta }_{e}}}{{{\eta }_{e}}}$
${{\eta }_{f}}=\dfrac{{{Q}_{2}}}{W}$
Complete step by step answer:
Let us write the formula for the efficiency of a refrigerator in terms of the heat energy absorbed from the reservoir at low temperature and the work done on the system.
The efficiency ${{\eta }_{f}}$ of a refrigerator when ${{Q}_{2}}$ amount of heat energy is taken from the reservoir at low temperature and $W$ amount of work is done on the system is given as
${{\eta }_{f}}=\dfrac{{{Q}_{2}}}{W}$ --(1)
Also, the efficiency ${{\eta }_{f}}$ of a refrigerator in terms of its efficiency ${{\eta }_{e}}$ when used as a heat engine is given by
${{\eta }_{f}}=\dfrac{1-{{\eta }_{e}}}{{{\eta }_{e}}}$ --(2)
Now, let us analyze the question.
The work done on a refrigerator system is $W=10J$.
The efficiency of the refrigerator when used as a heat engine is ${{\eta }_{e}}=\dfrac{1}{10}$.
Let the efficiency of the refrigerator be ${{\eta }_{f}}$.
Let the amount of heat energy absorbed from the reservoir at low temperature be ${{Q}_{2}}$.
Therefore, using (1), we get
${{\eta }_{f}}=\dfrac{{{Q}_{2}}}{W}$ --(3)
Also, using (2) we get
${{\eta }_{f}}=\dfrac{1-{{\eta }_{e}}}{{{\eta }_{e}}}$ --(4)
Equating (3) and (4), we get
$\dfrac{{{Q}_{2}}}{W}=\dfrac{1-{{\eta }_{e}}}{{{\eta }_{e}}}$
Putting the values of the variables in the above equation, we get
$\dfrac{{{Q}_{2}}}{10}=\dfrac{1-\dfrac{1}{10}}{\dfrac{1}{10}}=\dfrac{\dfrac{10-1}{10}}{\dfrac{1}{10}}=\dfrac{\dfrac{9}{10}}{\dfrac{1}{10}}=9$
$\therefore {{Q}_{2}}=9\times 10=90J$
Therefore, we have got the heat absorbed from the reservoir at low temperature as $90J$.
So, the correct answer is “Option B”.
Note: The relation between the efficiency of a refrigerator in terms of the efficiency when used as a heat engine comes from the fact that a heat engine and a refrigerator are essentially reverse processes of each other. In a heat engine, heat is taken from a reservoir at high temperature to do some work and then the rest is dumped into a reservoir at low temperature. On the other hand in a refrigerator, the reverse happens. Heat is taken from a reservoir at low temperature, some work is done upon the system and the heat is released into a reservoir at high temperature. From this knowledge, the efficiency of a heat engine can be written in terms of the efficiency when used as a refrigerator and vice versa.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
State the laws of reflection of light