
A card is drawn from a pack of $52$ cards at random. The probability of getting
Neither an ace nor a king card is:
${\text{A}}{\text{.}}$$\frac{2}{{13}}$
${\text{B}}{\text{.}}$$\frac{{11}}{{13}}$
${\text{C}}{\text{.}}$$\frac{4}{{13}}$
${\text{D}}{\text{.}}$ $\frac{8}{{13}}$
Answer
612.3k+ views
Hint: - Total number of ace cards in a pack of $52$ cards is $4$ and the total Number of king card is $4$. That means the number of required cards in pack is $44$.
We have to find a probability of getting neither an ace nor a king.
As we know:
A deck of cards contains $52$ cards. They are divided into four suits: Spades, diamonds, clubs and hearts each suit has $13$ cards: in which $1$ ace cards and three picture cards: jack, king and queen. In this question we neither need king nor is ace that means number of required cards $44$.
$p\left( A \right) = \frac{{N\left( E \right)}}{{N\left( S \right)}}$
This is the formula of finding the probability of any event $A$ where $N\left( E \right)$is the number of favorable outcomes and $N\left( S \right)$ is total outcomes or sample space.
Probability of getting neither an ace nor a king is=$\frac{{44}}{{52}} = \frac{{11}}{{13}}$
Option ${\text{B}}$ is correct.
Note:-You have to find total number of outcomes and total number of Favorable outcomes and just put in the formulae of finding the Probability. in this type of cards question you should have knowledge of cards distribution.
We have to find a probability of getting neither an ace nor a king.
As we know:
A deck of cards contains $52$ cards. They are divided into four suits: Spades, diamonds, clubs and hearts each suit has $13$ cards: in which $1$ ace cards and three picture cards: jack, king and queen. In this question we neither need king nor is ace that means number of required cards $44$.
$p\left( A \right) = \frac{{N\left( E \right)}}{{N\left( S \right)}}$
This is the formula of finding the probability of any event $A$ where $N\left( E \right)$is the number of favorable outcomes and $N\left( S \right)$ is total outcomes or sample space.
Probability of getting neither an ace nor a king is=$\frac{{44}}{{52}} = \frac{{11}}{{13}}$
Option ${\text{B}}$ is correct.
Note:-You have to find total number of outcomes and total number of Favorable outcomes and just put in the formulae of finding the Probability. in this type of cards question you should have knowledge of cards distribution.
Recently Updated Pages
What happens to glucose which enters nephron along class 10 biology CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

When the JanmiKudian Act was passed that granted the class 10 social science CBSE

A sector containing an angle of 120 circ is cut off class 10 maths CBSE

The sum of digits of a two digit number is 13 If t-class-10-maths-ICSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the missing number in the sequence 259142027 class 10 maths CBSE

