
A car manufacturing factory has two plants X and Y. Plant X manufactures 70% of the cars and plant Y manufactures 30%. At plant X, 80% of the cars are rated of standard quality and at plant Y, 90% are rated of standard quality. A car is picked up at random and is found to be of standard quality. Find the probability that it has come from plant X.
Answer
570.6k+ views
Hint: In this question, we have to find the probability that, if car picked is of standard quality then it has come from plant X. For this, we will use the Bayes theorem according to which $P\left( \dfrac{{{E}_{1}}}{A} \right)=\dfrac{P\left( {{E}_{1}} \right)\cdot P\left( \dfrac{A}{{{E}_{1}}} \right)}{P\left( {{E}_{1}} \right)\cdot P\left( \dfrac{A}{{{E}_{1}}} \right)+P\left( {{E}_{2}} \right)\cdot P\left( \dfrac{A}{{{E}_{2}}} \right)}$.
Where $P\left( {{E}_{1}} \right)$ is the probability of event ${{E}_{1}}$ happening , $P\left( \dfrac{A}{{{E}_{1}}} \right)$ is the probability of selecting A from event ${{E}_{1}}$, $P\left( \dfrac{{{E}_{1}}}{A} \right)$ is the probability event ${{E}_{1}}$ happening under condition of A and similarly for $P\left( {{E}_{2}} \right)$ and $P\left( \dfrac{A}{{{E}_{2}}} \right)$.
Complete step-by-step answer:
Here we are given that a car manufacturing factory has two plants X and Y.
Let us suppose that ${{E}_{1}}$ represent the event such that cars manufactured from plant X is drawn, ${{E}_{2}}$ represent the event such that car manufactured from plant Y is drawn and A represent that the car drawn is of standard quality.
We need to find probability that if the selected car is of standard quality, then it is drawn from plant X which means we need to find $P\left( \dfrac{{{E}_{1}}}{A} \right)$.
We know that Bayes theorem is given as, $P\left( \dfrac{{{E}_{1}}}{A} \right)=\dfrac{P\left( {{E}_{1}} \right)\cdot P\left( \dfrac{A}{{{E}_{1}}} \right)}{P\left( {{E}_{1}} \right)\cdot P\left( \dfrac{A}{{{E}_{1}}} \right)+P\left( {{E}_{2}} \right)\cdot P\left( \dfrac{A}{{{E}_{2}}} \right)}$.
So let us find the value of $P\left( {{E}_{1}} \right)$,$P\left( {{E}_{2}} \right)$,$P\left( \dfrac{A}{{{E}_{1}}} \right)$,$P\left( \dfrac{A}{{{E}_{2}}} \right)$.
For $P\left( {{E}_{1}} \right)$.
It represents the probability of choosing a car from plant X. As we are given that, 70% of the cars are manufactured at plant X. So required probability will be $\dfrac{70}{100}$. Therefore, $P\left( {{E}_{1}} \right)=\dfrac{70}{100}=\dfrac{7}{10}$.
For $P\left( {{E}_{2}} \right)$.
It represents the probability of choosing a car from plant Y. As we are given that, 30% of the cars are manufactured at plant Y. So required probability will be $\dfrac{30}{100}$. Therefore, $P\left( {{E}_{2}} \right)=\dfrac{30}{100}=\dfrac{3}{10}$.
For $P\left( \dfrac{A}{{{E}_{1}}} \right)$.
It represents the probability of picking a standard car from plant X. As we are given that, 80% of the cars are standard in plant X. So required probability will be $\dfrac{80}{100}$. Therefore, $P\left( \dfrac{A}{{{E}_{1}}} \right)=\dfrac{80}{100}=\dfrac{8}{10}$.
For $P\left( \dfrac{A}{{{E}_{2}}} \right)$.
It represents the probability of picking a standard car from plant Y. As we are given that 90% of the cars are standard in plant Y. So the required probability will be $\dfrac{90}{100}$. Therefore, $P\left( \dfrac{A}{{{E}_{2}}} \right)=\dfrac{90}{100}=\dfrac{9}{10}$.
Putting in all the values we get:
\[\begin{align}
& P\left( \dfrac{{{E}_{1}}}{A} \right)=\dfrac{\dfrac{7}{10}\times \dfrac{8}{10}}{\left( \dfrac{7}{10}\times \dfrac{8}{10} \right)+\left( \dfrac{3}{10}\times \dfrac{9}{10} \right)} \\
& \Rightarrow \dfrac{\dfrac{56}{100}}{\dfrac{56}{100}+\dfrac{27}{100}} \\
& \Rightarrow \dfrac{\dfrac{56}{100}}{\dfrac{83}{100}} \\
& \Rightarrow \dfrac{56}{100}\times \dfrac{83}{100} \\
& \Rightarrow \dfrac{56}{83} \\
\end{align}\]
Hence our required probability is $\dfrac{56}{83}$.
Note: Students should carefully use Bayes theorem by finding accurate probability. Student can get confused between $P\left( \dfrac{A}{{{E}_{1}}} \right)\text{ and }P\left( \dfrac{{{E}_{1}}}{A} \right)$. Take care while solving fractions. Generally, $P\left( \dfrac{A}{B} \right)$ means probability of event A occurring under the condition of B. Probability should always lie between 0 and 1.
Where $P\left( {{E}_{1}} \right)$ is the probability of event ${{E}_{1}}$ happening , $P\left( \dfrac{A}{{{E}_{1}}} \right)$ is the probability of selecting A from event ${{E}_{1}}$, $P\left( \dfrac{{{E}_{1}}}{A} \right)$ is the probability event ${{E}_{1}}$ happening under condition of A and similarly for $P\left( {{E}_{2}} \right)$ and $P\left( \dfrac{A}{{{E}_{2}}} \right)$.
Complete step-by-step answer:
Here we are given that a car manufacturing factory has two plants X and Y.
Let us suppose that ${{E}_{1}}$ represent the event such that cars manufactured from plant X is drawn, ${{E}_{2}}$ represent the event such that car manufactured from plant Y is drawn and A represent that the car drawn is of standard quality.
We need to find probability that if the selected car is of standard quality, then it is drawn from plant X which means we need to find $P\left( \dfrac{{{E}_{1}}}{A} \right)$.
We know that Bayes theorem is given as, $P\left( \dfrac{{{E}_{1}}}{A} \right)=\dfrac{P\left( {{E}_{1}} \right)\cdot P\left( \dfrac{A}{{{E}_{1}}} \right)}{P\left( {{E}_{1}} \right)\cdot P\left( \dfrac{A}{{{E}_{1}}} \right)+P\left( {{E}_{2}} \right)\cdot P\left( \dfrac{A}{{{E}_{2}}} \right)}$.
So let us find the value of $P\left( {{E}_{1}} \right)$,$P\left( {{E}_{2}} \right)$,$P\left( \dfrac{A}{{{E}_{1}}} \right)$,$P\left( \dfrac{A}{{{E}_{2}}} \right)$.
For $P\left( {{E}_{1}} \right)$.
It represents the probability of choosing a car from plant X. As we are given that, 70% of the cars are manufactured at plant X. So required probability will be $\dfrac{70}{100}$. Therefore, $P\left( {{E}_{1}} \right)=\dfrac{70}{100}=\dfrac{7}{10}$.
For $P\left( {{E}_{2}} \right)$.
It represents the probability of choosing a car from plant Y. As we are given that, 30% of the cars are manufactured at plant Y. So required probability will be $\dfrac{30}{100}$. Therefore, $P\left( {{E}_{2}} \right)=\dfrac{30}{100}=\dfrac{3}{10}$.
For $P\left( \dfrac{A}{{{E}_{1}}} \right)$.
It represents the probability of picking a standard car from plant X. As we are given that, 80% of the cars are standard in plant X. So required probability will be $\dfrac{80}{100}$. Therefore, $P\left( \dfrac{A}{{{E}_{1}}} \right)=\dfrac{80}{100}=\dfrac{8}{10}$.
For $P\left( \dfrac{A}{{{E}_{2}}} \right)$.
It represents the probability of picking a standard car from plant Y. As we are given that 90% of the cars are standard in plant Y. So the required probability will be $\dfrac{90}{100}$. Therefore, $P\left( \dfrac{A}{{{E}_{2}}} \right)=\dfrac{90}{100}=\dfrac{9}{10}$.
Putting in all the values we get:
\[\begin{align}
& P\left( \dfrac{{{E}_{1}}}{A} \right)=\dfrac{\dfrac{7}{10}\times \dfrac{8}{10}}{\left( \dfrac{7}{10}\times \dfrac{8}{10} \right)+\left( \dfrac{3}{10}\times \dfrac{9}{10} \right)} \\
& \Rightarrow \dfrac{\dfrac{56}{100}}{\dfrac{56}{100}+\dfrac{27}{100}} \\
& \Rightarrow \dfrac{\dfrac{56}{100}}{\dfrac{83}{100}} \\
& \Rightarrow \dfrac{56}{100}\times \dfrac{83}{100} \\
& \Rightarrow \dfrac{56}{83} \\
\end{align}\]
Hence our required probability is $\dfrac{56}{83}$.
Note: Students should carefully use Bayes theorem by finding accurate probability. Student can get confused between $P\left( \dfrac{A}{{{E}_{1}}} \right)\text{ and }P\left( \dfrac{{{E}_{1}}}{A} \right)$. Take care while solving fractions. Generally, $P\left( \dfrac{A}{B} \right)$ means probability of event A occurring under the condition of B. Probability should always lie between 0 and 1.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

In a human foetus the limbs and digits develop after class 12 biology CBSE

AABbCc genotype forms how many types of gametes a 4 class 12 biology CBSE

The correct structure of ethylenediaminetetraacetic class 12 chemistry CBSE

