
A car acquires a velocity of \[72\,{\text{km}} \cdot {{\text{h}}^{ - 1}}\] in \[2\,{\text{s}}\] starting from rest. Calculate the average velocity.A. \[10\,{\text{m}} \cdot {{\text{s}}^{ - 1}}\]B. \[5\,{\text{m}} \cdot {{\text{s}}^{ - 1}}\]C. \[20\,{\text{m}} \cdot {{\text{s}}^{ - 1}}\]D. \[72\,{\text{km}} \cdot {{\text{h}}^{ - 1}}\]
Answer
583.5k+ views
Hint: Use the average velocity formula. Also determine the acceleration of the car and the total displacement of the car using kinematic equations relating the initial velocity, final velocity, acceleration, total displacement and time.
Formulae used:
Complete step by step answer:
Note: The average velocity of the car can also be determined by taking the mean of the initial and final velocity of the car.Also don’t confuse between the average speed and average velocity,the former is defined as total distance travelled divided by the time taken while later is defined as the total displacement divided by total time taken.
Formulae used:
The expression for the average velocity \[v\] is
\[\Rightarrow v = \dfrac{s}{t}\] …… (1)
Here, \[s\] is the total displacement and \[t\] is the time.
The kinematic equation relating final velocity \[v\], initial velocity \[u\], acceleration \[a\] and time \[t\] is
\[\Rightarrow v = u + at\] …… (2)
The kinematic equation relating displacement \[s\], initial velocity \[u\], acceleration \[a\] and time \[t\] is
\[\Rightarrow s = ut + \dfrac{1}{2}a{t^2}\] …… (3)
The car starts from rest. Hence, the initial velocity of the car is zero.
The time required for the car to reach the velocity \[72\,{\text{km}} \cdot {{\text{h}}^{ - 1}}\] is \[2\,{\text{s}}\].
Calculate the acceleration of the car.
Rearrange equation (2) for acceleration \[a\].
\[\Rightarrow a = \dfrac{{v - u}}{t}\]
Substitute \[72\,{\text{km}} \cdot {{\text{h}}^{ - 1}}\] for \[v\], \[0\,{\text{km}} \cdot {{\text{h}}^{ - 1}}\] for \[u\] and \[2\,{\text{s}}\] for \[t\] in the above equation.
\[\Rightarrow a = \dfrac{{\left( {72\,{\text{km}} \cdot {{\text{h}}^{ - 1}}} \right) - \left( {0\,{\text{km}} \cdot {{\text{h}}^{ - 1}}} \right)}}{{2\,{\text{s}}}}\]
\[ \Rightarrow a = \dfrac{{\left( {72\,{\text{km}} \cdot {{\text{h}}^{ - 1}}} \right)\left( {\dfrac{{{{10}^3}\,{\text{m}}}}{{1\,{\text{km}}}}} \right)\left( {\dfrac{{1\,{\text{h}}}}{{3600\,{\text{s}}}}} \right)}}{{2\,{\text{s}}}}\]
\[ \Rightarrow a = 10\,{\text{m}} \cdot {{\text{s}}^{ - 2}}\]
Hence, the acceleration of the car is \[10\,{\text{m}} \cdot {{\text{s}}^{ - 2}}\].
Calculate the total displacement of the car.
Substitute \[0\,{\text{km}} \cdot {{\text{h}}^{ - 1}}\] for \[u\], \[2\,{\text{s}}\] for \[t\] and \[10\,{\text{m}} \cdot {{\text{s}}^{ - 1}}\] for \[a\] in equation (3).
\[\Rightarrow s = \left( {0\,{\text{m}} \cdot {{\text{s}}^{ - 1}}} \right)\left( {2\,{\text{s}}} \right) + \dfrac{1}{2}\left( {10\,{\text{m}} \cdot {{\text{s}}^{ - 1}}} \right){\left( {2\,{\text{s}}} \right)^2}\]
\[ \Rightarrow s = 20\,{\text{m}}\]
Hence, the total displacement of the car is \[20\,{\text{m}}\].
Now calculate the average velocity of the car.
Substitute \[20\,{\text{m}}\] for \[s\] and \[2\,{\text{s}}\] for \[t\] in equation (1).
\[\Rightarrow v = \dfrac{{20\,{\text{m}}}}{{2\,{\text{s}}}}\]
\[ \Rightarrow v = 10\,{\text{m}} \cdot {{\text{s}}^{ - 1}}\]
Therefore, the average velocity of the car is \[10\,{\text{m}} \cdot {{\text{s}}^{ - 1}}\].
Hence, the correct option is A.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

