
A bullet of mass $0.04kg$ with a speed of $90m/s$ enters a heavy wooden block and is stopped after a distance of $60cm$ . What is the average force exerted by the block on the bullet?
Answer
569.7k+ views
Hint: Start by calculating the value of acceleration by using the third equation of motion, i.e. ${v^2} = {u^2} + 2as$ . Then calculate the average force exerted on the block by using Newton’s second equation of motion, i.e. $F = ma$ .
Complete answer:
By the application of Newton’s second law of motion, we know that the force applied on any object is given by the equation
$F = ma$
Here, $F = $ Force applied to the object
$m = $ The mass of the object
$a = $ The acceleration of the body
In the problem the mass of the bullet is given, so we only have to calculate the acceleration of the bullet.
Acceleration is a vector quantity that is described as the rate by which a change of velocity occurs with time.
Now, we know that when the bullet will strike the block, the bullet will slowly decelerate until it comes to a stop (so $v = 0$ ).
The third equation of motion is as follows
${v^2} = {u^2} + 2as$
Here, $v = $ The final velocity of an object
$u = $ The initial velocity of an object
$a = $ The acceleration of the object
$s = $ The distance covered by the object
Given in the problem, $u = 90m/s$
$s = 60cm = 0.6m$
So the third equation of motion becomes
${\left( 0 \right)^2} = {\left( {90} \right)^2} + 2 \times a \times 0.6$
$a = - 6750m/{s^2}$
Now the resistive force applied by the block on the bullet can be calculated by using Newton’s second law of motion
$F = ma$
$F = 0.04 \times - 6750$
$F = - 270N$
Note:
Force is equal to mass into acceleration. Here the negative sign indicates that force applied by the rock is in the opposite direction to the velocity of the bullet. Third law of friction, when we touch a heavy box, it pushes back at you with an equal and opposite force so that the harder the force of action, the greater the force of reaction.
Complete answer:
By the application of Newton’s second law of motion, we know that the force applied on any object is given by the equation
$F = ma$
Here, $F = $ Force applied to the object
$m = $ The mass of the object
$a = $ The acceleration of the body
In the problem the mass of the bullet is given, so we only have to calculate the acceleration of the bullet.
Acceleration is a vector quantity that is described as the rate by which a change of velocity occurs with time.
Now, we know that when the bullet will strike the block, the bullet will slowly decelerate until it comes to a stop (so $v = 0$ ).
The third equation of motion is as follows
${v^2} = {u^2} + 2as$
Here, $v = $ The final velocity of an object
$u = $ The initial velocity of an object
$a = $ The acceleration of the object
$s = $ The distance covered by the object
Given in the problem, $u = 90m/s$
$s = 60cm = 0.6m$
So the third equation of motion becomes
${\left( 0 \right)^2} = {\left( {90} \right)^2} + 2 \times a \times 0.6$
$a = - 6750m/{s^2}$
Now the resistive force applied by the block on the bullet can be calculated by using Newton’s second law of motion
$F = ma$
$F = 0.04 \times - 6750$
$F = - 270N$
Note:
Force is equal to mass into acceleration. Here the negative sign indicates that force applied by the rock is in the opposite direction to the velocity of the bullet. Third law of friction, when we touch a heavy box, it pushes back at you with an equal and opposite force so that the harder the force of action, the greater the force of reaction.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

