Answer
Verified
490.5k+ views
Hint: Draw a diagram to clearly analyse the situation. Two right angled triangles will be formed for the two end points of the bridge. Calculate the height of the bridge above the top of the temple using one of the triangles and then put this value for another triangle.
Complete step-by-step answer:
Consider the above figure. A and B are two end points of the bridge.
The length of the bridge is given in the question as 800 meters. So, we have:
$ \Rightarrow AB = 800m .....(i)$
Next, C is the position of the temple. Angles of depression on the top of the temple from the end points of the temple are given as ${30^ \circ }$ and ${60^ \circ }$. So, we get:
$ \Rightarrow \angle CBA = {30^ \circ }{\text{ and }}\angle CAB = {60^ \circ }$
We have to calculate the height of the bridge above the top of the temple. From the figure, this height is CD. So, we have to calculate the length of CD. Let its value is h.
$ \Rightarrow CD = h .....(ii)$
Now, let $AD = x .....(iii)$
As we can see from the figure, $AD + DB = AB$
And from equation $(i)$, $AB = 800m$. So we have:
$
\Rightarrow AD + DB = AB, \\
\Rightarrow x + DB = 800, \\
\Rightarrow DB = 800 - x .....(iv) \\
$
Next, consider $\Delta ADC$,
$ \Rightarrow \tan {60^ \circ } = \dfrac{{CD}}{{AD}},$
We know that $\tan {60^ \circ } = \sqrt 3 $ and from equation $(ii)$ and $(iii)$, $CD = h$ and $AD = x$. Putting these values in above equation:
$
\Rightarrow \sqrt 3 = \dfrac{h}{x}, \\
\Rightarrow x = \dfrac{h}{{\sqrt 3 }} .....(v) \\
$
Now consider $\Delta BDC$,
$ \Rightarrow \tan {30^ \circ } = \dfrac{{CD}}{{BD}}$
We know that $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$ and from equation $(ii)$ and $(iii)$, $CD = h$ and $DB = 800 - x$. Putting these values in above equation:
$
\Rightarrow \dfrac{1}{{\sqrt 3 }} = \dfrac{h}{{800 - x}}, \\
\Rightarrow 800 - x = h\sqrt 3 \\
$
Putting $x = \dfrac{h}{{\sqrt 3 }}$ from equation $(v)$, we’ll get:
$
\Rightarrow 800 - \dfrac{h}{{\sqrt 3 }} = h\sqrt 3 , \\
\Rightarrow h\left( {\sqrt 3 + \dfrac{1}{{\sqrt 3 }}} \right) = 800, \\
\Rightarrow h\left( {\dfrac{{3 + 1}}{{\sqrt 3 }}} \right) = 800, \\
\Rightarrow h = \dfrac{{800\sqrt 3 }}{4}, \\
\Rightarrow h = 200\sqrt 3 \\
$
Thus, the height of the bridge above the top of the temple is $200\sqrt 3 $ meters.
Note: Whenever angle of elevation or angle of depression is given, we use to analyse the scenario using a right angled triangle with the help of suitable trigonometric ratios depending upon what is given and what is asked in the question.
Complete step-by-step answer:
Consider the above figure. A and B are two end points of the bridge.
The length of the bridge is given in the question as 800 meters. So, we have:
$ \Rightarrow AB = 800m .....(i)$
Next, C is the position of the temple. Angles of depression on the top of the temple from the end points of the temple are given as ${30^ \circ }$ and ${60^ \circ }$. So, we get:
$ \Rightarrow \angle CBA = {30^ \circ }{\text{ and }}\angle CAB = {60^ \circ }$
We have to calculate the height of the bridge above the top of the temple. From the figure, this height is CD. So, we have to calculate the length of CD. Let its value is h.
$ \Rightarrow CD = h .....(ii)$
Now, let $AD = x .....(iii)$
As we can see from the figure, $AD + DB = AB$
And from equation $(i)$, $AB = 800m$. So we have:
$
\Rightarrow AD + DB = AB, \\
\Rightarrow x + DB = 800, \\
\Rightarrow DB = 800 - x .....(iv) \\
$
Next, consider $\Delta ADC$,
$ \Rightarrow \tan {60^ \circ } = \dfrac{{CD}}{{AD}},$
We know that $\tan {60^ \circ } = \sqrt 3 $ and from equation $(ii)$ and $(iii)$, $CD = h$ and $AD = x$. Putting these values in above equation:
$
\Rightarrow \sqrt 3 = \dfrac{h}{x}, \\
\Rightarrow x = \dfrac{h}{{\sqrt 3 }} .....(v) \\
$
Now consider $\Delta BDC$,
$ \Rightarrow \tan {30^ \circ } = \dfrac{{CD}}{{BD}}$
We know that $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$ and from equation $(ii)$ and $(iii)$, $CD = h$ and $DB = 800 - x$. Putting these values in above equation:
$
\Rightarrow \dfrac{1}{{\sqrt 3 }} = \dfrac{h}{{800 - x}}, \\
\Rightarrow 800 - x = h\sqrt 3 \\
$
Putting $x = \dfrac{h}{{\sqrt 3 }}$ from equation $(v)$, we’ll get:
$
\Rightarrow 800 - \dfrac{h}{{\sqrt 3 }} = h\sqrt 3 , \\
\Rightarrow h\left( {\sqrt 3 + \dfrac{1}{{\sqrt 3 }}} \right) = 800, \\
\Rightarrow h\left( {\dfrac{{3 + 1}}{{\sqrt 3 }}} \right) = 800, \\
\Rightarrow h = \dfrac{{800\sqrt 3 }}{4}, \\
\Rightarrow h = 200\sqrt 3 \\
$
Thus, the height of the bridge above the top of the temple is $200\sqrt 3 $ meters.
Note: Whenever angle of elevation or angle of depression is given, we use to analyse the scenario using a right angled triangle with the help of suitable trigonometric ratios depending upon what is given and what is asked in the question.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths