
A bridge across a valley is 800 meters long. There is a temple in the valley directly below the bridge. The angle of depression of the top of the temple from the two ends of the bridge measures ${30^ \circ }$ and ${60^ \circ }$. Find the height of the bridge above the top of the temple.
Answer
594k+ views
Hint: Draw a diagram to clearly analyse the situation. Two right angled triangles will be formed for the two end points of the bridge. Calculate the height of the bridge above the top of the temple using one of the triangles and then put this value for another triangle.
Complete step-by-step answer:
Consider the above figure. A and B are two end points of the bridge.
The length of the bridge is given in the question as 800 meters. So, we have:
$ \Rightarrow AB = 800m .....(i)$
Next, C is the position of the temple. Angles of depression on the top of the temple from the end points of the temple are given as ${30^ \circ }$ and ${60^ \circ }$. So, we get:
$ \Rightarrow \angle CBA = {30^ \circ }{\text{ and }}\angle CAB = {60^ \circ }$
We have to calculate the height of the bridge above the top of the temple. From the figure, this height is CD. So, we have to calculate the length of CD. Let its value is h.
$ \Rightarrow CD = h .....(ii)$
Now, let $AD = x .....(iii)$
As we can see from the figure, $AD + DB = AB$
And from equation $(i)$, $AB = 800m$. So we have:
$
\Rightarrow AD + DB = AB, \\
\Rightarrow x + DB = 800, \\
\Rightarrow DB = 800 - x .....(iv) \\
$
Next, consider $\Delta ADC$,
$ \Rightarrow \tan {60^ \circ } = \dfrac{{CD}}{{AD}},$
We know that $\tan {60^ \circ } = \sqrt 3 $ and from equation $(ii)$ and $(iii)$, $CD = h$ and $AD = x$. Putting these values in above equation:
$
\Rightarrow \sqrt 3 = \dfrac{h}{x}, \\
\Rightarrow x = \dfrac{h}{{\sqrt 3 }} .....(v) \\
$
Now consider $\Delta BDC$,
$ \Rightarrow \tan {30^ \circ } = \dfrac{{CD}}{{BD}}$
We know that $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$ and from equation $(ii)$ and $(iii)$, $CD = h$ and $DB = 800 - x$. Putting these values in above equation:
$
\Rightarrow \dfrac{1}{{\sqrt 3 }} = \dfrac{h}{{800 - x}}, \\
\Rightarrow 800 - x = h\sqrt 3 \\
$
Putting $x = \dfrac{h}{{\sqrt 3 }}$ from equation $(v)$, we’ll get:
$
\Rightarrow 800 - \dfrac{h}{{\sqrt 3 }} = h\sqrt 3 , \\
\Rightarrow h\left( {\sqrt 3 + \dfrac{1}{{\sqrt 3 }}} \right) = 800, \\
\Rightarrow h\left( {\dfrac{{3 + 1}}{{\sqrt 3 }}} \right) = 800, \\
\Rightarrow h = \dfrac{{800\sqrt 3 }}{4}, \\
\Rightarrow h = 200\sqrt 3 \\
$
Thus, the height of the bridge above the top of the temple is $200\sqrt 3 $ meters.
Note: Whenever angle of elevation or angle of depression is given, we use to analyse the scenario using a right angled triangle with the help of suitable trigonometric ratios depending upon what is given and what is asked in the question.
Complete step-by-step answer:
Consider the above figure. A and B are two end points of the bridge.
The length of the bridge is given in the question as 800 meters. So, we have:
$ \Rightarrow AB = 800m .....(i)$
Next, C is the position of the temple. Angles of depression on the top of the temple from the end points of the temple are given as ${30^ \circ }$ and ${60^ \circ }$. So, we get:
$ \Rightarrow \angle CBA = {30^ \circ }{\text{ and }}\angle CAB = {60^ \circ }$
We have to calculate the height of the bridge above the top of the temple. From the figure, this height is CD. So, we have to calculate the length of CD. Let its value is h.
$ \Rightarrow CD = h .....(ii)$
Now, let $AD = x .....(iii)$
As we can see from the figure, $AD + DB = AB$
And from equation $(i)$, $AB = 800m$. So we have:
$
\Rightarrow AD + DB = AB, \\
\Rightarrow x + DB = 800, \\
\Rightarrow DB = 800 - x .....(iv) \\
$
Next, consider $\Delta ADC$,
$ \Rightarrow \tan {60^ \circ } = \dfrac{{CD}}{{AD}},$
We know that $\tan {60^ \circ } = \sqrt 3 $ and from equation $(ii)$ and $(iii)$, $CD = h$ and $AD = x$. Putting these values in above equation:
$
\Rightarrow \sqrt 3 = \dfrac{h}{x}, \\
\Rightarrow x = \dfrac{h}{{\sqrt 3 }} .....(v) \\
$
Now consider $\Delta BDC$,
$ \Rightarrow \tan {30^ \circ } = \dfrac{{CD}}{{BD}}$
We know that $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$ and from equation $(ii)$ and $(iii)$, $CD = h$ and $DB = 800 - x$. Putting these values in above equation:
$
\Rightarrow \dfrac{1}{{\sqrt 3 }} = \dfrac{h}{{800 - x}}, \\
\Rightarrow 800 - x = h\sqrt 3 \\
$
Putting $x = \dfrac{h}{{\sqrt 3 }}$ from equation $(v)$, we’ll get:
$
\Rightarrow 800 - \dfrac{h}{{\sqrt 3 }} = h\sqrt 3 , \\
\Rightarrow h\left( {\sqrt 3 + \dfrac{1}{{\sqrt 3 }}} \right) = 800, \\
\Rightarrow h\left( {\dfrac{{3 + 1}}{{\sqrt 3 }}} \right) = 800, \\
\Rightarrow h = \dfrac{{800\sqrt 3 }}{4}, \\
\Rightarrow h = 200\sqrt 3 \\
$
Thus, the height of the bridge above the top of the temple is $200\sqrt 3 $ meters.
Note: Whenever angle of elevation or angle of depression is given, we use to analyse the scenario using a right angled triangle with the help of suitable trigonometric ratios depending upon what is given and what is asked in the question.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Our national song Vande Mataram was taken from which class 10 social science CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE

