
A boy stands at $78.4m$ from a building and throws a ball which just enters a window $39.2m$ above the ground. Calculate the velocity of projection of the ball.
Answer
505.8k+ views
Hint: In the question they have given maximum height and range of projection for the body which is there in projectile motion. By using the given data we will find the angle of projection then substituting in the equation of range of projection we will find the initial velocity of the body.
Formulas used:
Maximum height, ${H_{\max }} = \dfrac{{{u^2}{{\sin }^2}\theta }}{{2g}}$ ……………..$\left( 1 \right)$
Range of projection, $R = \dfrac{{{u^2}\sin 2\theta }}{g}$ ……………..$\left( 2 \right)$
Complete step-by-step solution:
Given:
Range of projection, $R = 78.4m + 78.4m = 156.8m$
Maximum height , ${H_{\max }} = 39.2m$
Take, acceleration due to gravity , $g = 9.8m{s^{ - 2}}$
Using equation $\left( 1 \right)$
That is, ${H_{\max }} = \dfrac{{{u^2}{{\sin }^2}\theta }}{{2g}}$
\[39.2 = \dfrac{{{u^2}{{\sin }^2}\theta }}{{2 \times g}}\] …………… $\left( 3 \right)$
Using equation $\left( 2 \right)$
That is, $R = \dfrac{{{u^2}\sin 2\theta }}{g}$
$156.8 = \dfrac{{{u^2}\sin 2\theta }}{g}$ …………………$\left( 4 \right)$
$156.8 = \dfrac{{{u^2}2\sin \theta \cos \theta }}{g}$ ……………. $\left( 5 \right)$ $\left[ {\because \sin 2\theta = 2\sin \theta \cos \theta } \right]$
Divide equation $\left( 3 \right)$ and equation $\left( 5 \right)$
$\dfrac{{39.2}}{{156.8}} = \dfrac{{\dfrac{{{u^2}{{\sin }^2}\theta }}{{2 \times g}}}}{{\dfrac{{{u^2}2\sin \theta \cos \theta }}{g}}}$
$4 = \dfrac{{\dfrac{{\sin \theta }}{2}}}{{\dfrac{{2\cos \theta }}{1}}}$
Therefore, $\tan \theta = \dfrac{4}{4}$
$\tan \theta = 1$
$\theta = {\tan ^{ - 1}}1$
$\theta = {45^ \circ }$
Substituting in equation $\left( 4 \right)$ we get
$156.8 = \dfrac{{{u^2}\sin 90}}{{9.8}}$
$u = \sqrt {1536.64} $
Therefore, $u = 39.2m{s^{ - 1}}$
Note: Projectile motion is the form of motion experienced by a launched body that is motion of a body which is projected or thrown into the air with the angle made by the object with respect to the ground or x-axis.
Formulas used:
Maximum height, ${H_{\max }} = \dfrac{{{u^2}{{\sin }^2}\theta }}{{2g}}$ ……………..$\left( 1 \right)$
Range of projection, $R = \dfrac{{{u^2}\sin 2\theta }}{g}$ ……………..$\left( 2 \right)$
Complete step-by-step solution:
Given:
Range of projection, $R = 78.4m + 78.4m = 156.8m$
Maximum height , ${H_{\max }} = 39.2m$
Take, acceleration due to gravity , $g = 9.8m{s^{ - 2}}$
Using equation $\left( 1 \right)$
That is, ${H_{\max }} = \dfrac{{{u^2}{{\sin }^2}\theta }}{{2g}}$
\[39.2 = \dfrac{{{u^2}{{\sin }^2}\theta }}{{2 \times g}}\] …………… $\left( 3 \right)$
Using equation $\left( 2 \right)$
That is, $R = \dfrac{{{u^2}\sin 2\theta }}{g}$
$156.8 = \dfrac{{{u^2}\sin 2\theta }}{g}$ …………………$\left( 4 \right)$
$156.8 = \dfrac{{{u^2}2\sin \theta \cos \theta }}{g}$ ……………. $\left( 5 \right)$ $\left[ {\because \sin 2\theta = 2\sin \theta \cos \theta } \right]$
Divide equation $\left( 3 \right)$ and equation $\left( 5 \right)$
$\dfrac{{39.2}}{{156.8}} = \dfrac{{\dfrac{{{u^2}{{\sin }^2}\theta }}{{2 \times g}}}}{{\dfrac{{{u^2}2\sin \theta \cos \theta }}{g}}}$
$4 = \dfrac{{\dfrac{{\sin \theta }}{2}}}{{\dfrac{{2\cos \theta }}{1}}}$
Therefore, $\tan \theta = \dfrac{4}{4}$
$\tan \theta = 1$
$\theta = {\tan ^{ - 1}}1$
$\theta = {45^ \circ }$
Substituting in equation $\left( 4 \right)$ we get
$156.8 = \dfrac{{{u^2}\sin 90}}{{9.8}}$
$u = \sqrt {1536.64} $
Therefore, $u = 39.2m{s^{ - 1}}$
Note: Projectile motion is the form of motion experienced by a launched body that is motion of a body which is projected or thrown into the air with the angle made by the object with respect to the ground or x-axis.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

