Answer
Verified
456.3k+ views
Hint:Use the relation between the acceleration due gravity, universal gravitational constant, mass of the planet and radius of the planet. Calculate the value of acceleration due to gravity on the surface of the planet and then the weight of the body on the planet.
Formulae used:
The weight of the body is given by
\[W = mg\] …… (1)
Here, \[W\] is the weight of the body, \[m\] is the mass of the body and \[g\] is the acceleration due to gravity.
The relation between the acceleration due to gravity \[g\], universal gravitational constant \[G\], mass of the planet \[M\] and radius \[R\] of the planet is
\[g = \dfrac{{GM}}{{{R^2}}}\] …… (2)
Here, \[F\] is the gravitational force of attraction between the body and the planet, \[G\] is the universal gravitational constant, \[M\] is the mass and \[R\] is the radius of the planet respectively.
Complete step by step answer:
The mass of the body on the surface of the Earth is \[700\,{\text{g}}\].
The mass \[M'\] of the other planet is 1/7 th of the mass \[M\] of the Earth and the radius \[R'\] of the planet is half of the radius \[R\] of the Earth.
\[ \Rightarrow M' = \dfrac{1}{7}M\]
\[ \Rightarrow R' = \dfrac{R}{2}\]
Rewrite equation (2) for the acceleration due to gravity \[g\] on the surface of the Earth.
\[ \Rightarrow g = \dfrac{{GM}}{{{R^2}}}\] …… (3)
Rewrite equation (2) for the acceleration due to gravity \[g'\] on the surface of the planet.
\[ \Rightarrow g' = \dfrac{{GM'}}{{R{'^2}}}\] …… (4)
Divide equation (4) by equation (3).
\[ \Rightarrow \dfrac{{g'}}{g} = \dfrac{{\dfrac{{GM'}}{{R{'^2}}}}}{{\dfrac{{GM}}{{{R^2}}}}}\]
\[ \Rightarrow \dfrac{{g'}}{g} = \dfrac{{M'{R^2}}}{{MR{'^2}}}\]
Substitute \[\dfrac{1}{7}M\] for \[M'\] and \[\dfrac{R}{2}\] for \[R'\] in the above equation.
\[ \Rightarrow \dfrac{{g'}}{g} = \dfrac{{\left( {\dfrac{1}{7}M} \right){R^2}}}{{M{{\left( {\dfrac{R}{2}} \right)}^2}}}\]
\[ \Rightarrow \dfrac{{g'}}{g} = \dfrac{4}{7}\]
Rearrange the above equation for \[g'\].
\[ \Rightarrow g' = \dfrac{4}{7}g\]
Calculate the weight of the body on the planet.
Rewrite equation (1) for the weight \[W\] of the body on the planet.
\[ \Rightarrow W = mg'\]
Substitute \[700\,{\text{g}}\] for \[m\] and \[\dfrac{4}{7}g\] for \[g'\] in the above equation.
\[ \Rightarrow W = \left( {700\,{\text{g}}} \right)\left( {\dfrac{4}{7}g} \right)\]
\[ \Rightarrow W = 400g\]
\[ \Rightarrow W = 400\,{\text{gram wt}}\]
Therefore, the weight of the body on the surface of the planet is \[400\,{\text{gram wt}}\].
Hence, the correct option is A.
Note:Here in this question,the difference in weight of the body occurs due to change of acceleration due to gravity and also remember that mass and weight are the two different quantity.Weight of a body can be zero but mass of a body can not be zero.
Formulae used:
The weight of the body is given by
\[W = mg\] …… (1)
Here, \[W\] is the weight of the body, \[m\] is the mass of the body and \[g\] is the acceleration due to gravity.
The relation between the acceleration due to gravity \[g\], universal gravitational constant \[G\], mass of the planet \[M\] and radius \[R\] of the planet is
\[g = \dfrac{{GM}}{{{R^2}}}\] …… (2)
Here, \[F\] is the gravitational force of attraction between the body and the planet, \[G\] is the universal gravitational constant, \[M\] is the mass and \[R\] is the radius of the planet respectively.
Complete step by step answer:
The mass of the body on the surface of the Earth is \[700\,{\text{g}}\].
The mass \[M'\] of the other planet is 1/7 th of the mass \[M\] of the Earth and the radius \[R'\] of the planet is half of the radius \[R\] of the Earth.
\[ \Rightarrow M' = \dfrac{1}{7}M\]
\[ \Rightarrow R' = \dfrac{R}{2}\]
Rewrite equation (2) for the acceleration due to gravity \[g\] on the surface of the Earth.
\[ \Rightarrow g = \dfrac{{GM}}{{{R^2}}}\] …… (3)
Rewrite equation (2) for the acceleration due to gravity \[g'\] on the surface of the planet.
\[ \Rightarrow g' = \dfrac{{GM'}}{{R{'^2}}}\] …… (4)
Divide equation (4) by equation (3).
\[ \Rightarrow \dfrac{{g'}}{g} = \dfrac{{\dfrac{{GM'}}{{R{'^2}}}}}{{\dfrac{{GM}}{{{R^2}}}}}\]
\[ \Rightarrow \dfrac{{g'}}{g} = \dfrac{{M'{R^2}}}{{MR{'^2}}}\]
Substitute \[\dfrac{1}{7}M\] for \[M'\] and \[\dfrac{R}{2}\] for \[R'\] in the above equation.
\[ \Rightarrow \dfrac{{g'}}{g} = \dfrac{{\left( {\dfrac{1}{7}M} \right){R^2}}}{{M{{\left( {\dfrac{R}{2}} \right)}^2}}}\]
\[ \Rightarrow \dfrac{{g'}}{g} = \dfrac{4}{7}\]
Rearrange the above equation for \[g'\].
\[ \Rightarrow g' = \dfrac{4}{7}g\]
Calculate the weight of the body on the planet.
Rewrite equation (1) for the weight \[W\] of the body on the planet.
\[ \Rightarrow W = mg'\]
Substitute \[700\,{\text{g}}\] for \[m\] and \[\dfrac{4}{7}g\] for \[g'\] in the above equation.
\[ \Rightarrow W = \left( {700\,{\text{g}}} \right)\left( {\dfrac{4}{7}g} \right)\]
\[ \Rightarrow W = 400g\]
\[ \Rightarrow W = 400\,{\text{gram wt}}\]
Therefore, the weight of the body on the surface of the planet is \[400\,{\text{gram wt}}\].
Hence, the correct option is A.
Note:Here in this question,the difference in weight of the body occurs due to change of acceleration due to gravity and also remember that mass and weight are the two different quantity.Weight of a body can be zero but mass of a body can not be zero.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE