
A body of mass 3kg is under a force, which causes a displacement in it given by $s = \dfrac{{{t^3}}}{3}$
(in m). Find the Work done by the force in the first 2 seconds.
A). 24 J
B). 3.8 J
C). 5.2 J
D). 2.6 J
Answer
593.7k+ views
Hint: The definition of displacement, velocity, acceleration and work done with their mathematical expressions can be used to solve these types of questions. Students also need a good understanding of differential calculus as well as integral calculus to solve for the solution.
Formulas used:
$\eqalign{
& {\text{Velocity, }}v{\text{ }} = {\text{ }}\dfrac{{ds}}{{dt}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \left( 1 \right) \cr
& \Rightarrow ds = vdt{\text{ }}\left[ {by{\text{ rearranging equation}}\left( 1 \right)} \right] \cr
& \cr
& {\text{Acceleration, }}a = \dfrac{{dv}}{{dt}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \left( 2 \right) \cr
& {\text{Work Done,}}W{\text{ = Force }} \times {\text{ Displacement}} \cr
& {\text{Also, Force = Mass }} \times {\text{ Acceleration}} \cr
& \Rightarrow {\text{Work Done = Mass }} \times {\text{ Acceleration }} \times {\text{ Displacement}} \cr
& \Rightarrow W = \int {mavdt} \ldots \ldots \ldots \ldots \ldots \ldots \left( 3 \right) \cr} $
Complete solution Step-by-Step:
In order to solve this question first we need to find the force, F acting on the body of mass 3kgs. And then the distance travelled by the body in the given time period of 2 seconds. And thus finally the work done by the force in 2 seconds.
$\eqalign{
& {\text{Given:}} \cr
& {\text{ }}M = {\text{ }}3kg{\text{ }} \cr
& {\text{and }}s = \dfrac{{{t^3}}}{3} \cr} $
Differentiating s with respect to time t, we get:
$\eqalign{
& \dfrac{{ds}}{{dt}} = \dfrac{{d\left( {\dfrac{{{t^3}}}{3}} \right)}}{{dt}} \cr
& \Rightarrow \dfrac{{ds}}{{dt}} = \dfrac{{3{t^2}}}{3} \cr
& \Rightarrow \dfrac{{ds}}{{dt}} = {t^2} \cr
& \Rightarrow v = {t^2}{\text{ }}\left[ {\because \dfrac{{ds}}{{dt}} = v} \right] \cr} $
Again differentiating the above equation with respect to time t, we get:
$\eqalign{
& \dfrac{{dv}}{{dt}} = \dfrac{{d{t^2}}}{{dt}} \cr
& \Rightarrow \dfrac{{dv}}{{dt}} = 2t \cr
& \Rightarrow a = 2t{\text{ }}\left[ {\because \dfrac{{dv}}{{dt}} = a} \right] \cr} $
Now,
$\eqalign{
& {\text{Work Done, }}W = \int {mavdt} \cr
& \Rightarrow W = \int\limits_0^2 {m.2t.{t^2}} dt \cr
& \Rightarrow W = 2m\int\limits_0^2 {{t^3}} dt \cr
& \Rightarrow W = 2m\left| {\dfrac{{{t^4}}}{4}} \right|_0^2 \cr
& \Rightarrow W = 2 \times 3 \times \dfrac{{2 \times 2 \times 2 \times 2}}{4} \cr
& \Rightarrow W = 24J \cr} $
Hence the correct answer is A., i.e., 24 joules.
Note: Students make a lot of errors while applying the formulas of integral and differential calculus. For the above solution the formulas applicable are:
$\eqalign{
& \dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} \cr
& \int {{x^n}} dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C,{\text{where n}} \ne {\text{1}} \cr} $
Be sure to apply the formulas correctly and avoid silly calculation mistakes.
Formulas used:
$\eqalign{
& {\text{Velocity, }}v{\text{ }} = {\text{ }}\dfrac{{ds}}{{dt}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \left( 1 \right) \cr
& \Rightarrow ds = vdt{\text{ }}\left[ {by{\text{ rearranging equation}}\left( 1 \right)} \right] \cr
& \cr
& {\text{Acceleration, }}a = \dfrac{{dv}}{{dt}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \left( 2 \right) \cr
& {\text{Work Done,}}W{\text{ = Force }} \times {\text{ Displacement}} \cr
& {\text{Also, Force = Mass }} \times {\text{ Acceleration}} \cr
& \Rightarrow {\text{Work Done = Mass }} \times {\text{ Acceleration }} \times {\text{ Displacement}} \cr
& \Rightarrow W = \int {mavdt} \ldots \ldots \ldots \ldots \ldots \ldots \left( 3 \right) \cr} $
Complete solution Step-by-Step:
In order to solve this question first we need to find the force, F acting on the body of mass 3kgs. And then the distance travelled by the body in the given time period of 2 seconds. And thus finally the work done by the force in 2 seconds.
$\eqalign{
& {\text{Given:}} \cr
& {\text{ }}M = {\text{ }}3kg{\text{ }} \cr
& {\text{and }}s = \dfrac{{{t^3}}}{3} \cr} $
Differentiating s with respect to time t, we get:
$\eqalign{
& \dfrac{{ds}}{{dt}} = \dfrac{{d\left( {\dfrac{{{t^3}}}{3}} \right)}}{{dt}} \cr
& \Rightarrow \dfrac{{ds}}{{dt}} = \dfrac{{3{t^2}}}{3} \cr
& \Rightarrow \dfrac{{ds}}{{dt}} = {t^2} \cr
& \Rightarrow v = {t^2}{\text{ }}\left[ {\because \dfrac{{ds}}{{dt}} = v} \right] \cr} $
Again differentiating the above equation with respect to time t, we get:
$\eqalign{
& \dfrac{{dv}}{{dt}} = \dfrac{{d{t^2}}}{{dt}} \cr
& \Rightarrow \dfrac{{dv}}{{dt}} = 2t \cr
& \Rightarrow a = 2t{\text{ }}\left[ {\because \dfrac{{dv}}{{dt}} = a} \right] \cr} $
Now,
$\eqalign{
& {\text{Work Done, }}W = \int {mavdt} \cr
& \Rightarrow W = \int\limits_0^2 {m.2t.{t^2}} dt \cr
& \Rightarrow W = 2m\int\limits_0^2 {{t^3}} dt \cr
& \Rightarrow W = 2m\left| {\dfrac{{{t^4}}}{4}} \right|_0^2 \cr
& \Rightarrow W = 2 \times 3 \times \dfrac{{2 \times 2 \times 2 \times 2}}{4} \cr
& \Rightarrow W = 24J \cr} $
Hence the correct answer is A., i.e., 24 joules.
Note: Students make a lot of errors while applying the formulas of integral and differential calculus. For the above solution the formulas applicable are:
$\eqalign{
& \dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} \cr
& \int {{x^n}} dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C,{\text{where n}} \ne {\text{1}} \cr} $
Be sure to apply the formulas correctly and avoid silly calculation mistakes.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Master Class 11 Physics: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

State the laws of reflection of light

Difference Between Prokaryotic Cells and Eukaryotic Cells

10 examples of friction in our daily life

