
A body of mass 3kg is under a force, which causes a displacement in it given by $s = \dfrac{{{t^3}}}{3}$
(in m). Find the Work done by the force in the first 2 seconds.
A). 24 J
B). 3.8 J
C). 5.2 J
D). 2.6 J
Answer
582.6k+ views
Hint: The definition of displacement, velocity, acceleration and work done with their mathematical expressions can be used to solve these types of questions. Students also need a good understanding of differential calculus as well as integral calculus to solve for the solution.
Formulas used:
$\eqalign{
& {\text{Velocity, }}v{\text{ }} = {\text{ }}\dfrac{{ds}}{{dt}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \left( 1 \right) \cr
& \Rightarrow ds = vdt{\text{ }}\left[ {by{\text{ rearranging equation}}\left( 1 \right)} \right] \cr
& \cr
& {\text{Acceleration, }}a = \dfrac{{dv}}{{dt}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \left( 2 \right) \cr
& {\text{Work Done,}}W{\text{ = Force }} \times {\text{ Displacement}} \cr
& {\text{Also, Force = Mass }} \times {\text{ Acceleration}} \cr
& \Rightarrow {\text{Work Done = Mass }} \times {\text{ Acceleration }} \times {\text{ Displacement}} \cr
& \Rightarrow W = \int {mavdt} \ldots \ldots \ldots \ldots \ldots \ldots \left( 3 \right) \cr} $
Complete solution Step-by-Step:
In order to solve this question first we need to find the force, F acting on the body of mass 3kgs. And then the distance travelled by the body in the given time period of 2 seconds. And thus finally the work done by the force in 2 seconds.
$\eqalign{
& {\text{Given:}} \cr
& {\text{ }}M = {\text{ }}3kg{\text{ }} \cr
& {\text{and }}s = \dfrac{{{t^3}}}{3} \cr} $
Differentiating s with respect to time t, we get:
$\eqalign{
& \dfrac{{ds}}{{dt}} = \dfrac{{d\left( {\dfrac{{{t^3}}}{3}} \right)}}{{dt}} \cr
& \Rightarrow \dfrac{{ds}}{{dt}} = \dfrac{{3{t^2}}}{3} \cr
& \Rightarrow \dfrac{{ds}}{{dt}} = {t^2} \cr
& \Rightarrow v = {t^2}{\text{ }}\left[ {\because \dfrac{{ds}}{{dt}} = v} \right] \cr} $
Again differentiating the above equation with respect to time t, we get:
$\eqalign{
& \dfrac{{dv}}{{dt}} = \dfrac{{d{t^2}}}{{dt}} \cr
& \Rightarrow \dfrac{{dv}}{{dt}} = 2t \cr
& \Rightarrow a = 2t{\text{ }}\left[ {\because \dfrac{{dv}}{{dt}} = a} \right] \cr} $
Now,
$\eqalign{
& {\text{Work Done, }}W = \int {mavdt} \cr
& \Rightarrow W = \int\limits_0^2 {m.2t.{t^2}} dt \cr
& \Rightarrow W = 2m\int\limits_0^2 {{t^3}} dt \cr
& \Rightarrow W = 2m\left| {\dfrac{{{t^4}}}{4}} \right|_0^2 \cr
& \Rightarrow W = 2 \times 3 \times \dfrac{{2 \times 2 \times 2 \times 2}}{4} \cr
& \Rightarrow W = 24J \cr} $
Hence the correct answer is A., i.e., 24 joules.
Note: Students make a lot of errors while applying the formulas of integral and differential calculus. For the above solution the formulas applicable are:
$\eqalign{
& \dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} \cr
& \int {{x^n}} dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C,{\text{where n}} \ne {\text{1}} \cr} $
Be sure to apply the formulas correctly and avoid silly calculation mistakes.
Formulas used:
$\eqalign{
& {\text{Velocity, }}v{\text{ }} = {\text{ }}\dfrac{{ds}}{{dt}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \left( 1 \right) \cr
& \Rightarrow ds = vdt{\text{ }}\left[ {by{\text{ rearranging equation}}\left( 1 \right)} \right] \cr
& \cr
& {\text{Acceleration, }}a = \dfrac{{dv}}{{dt}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \left( 2 \right) \cr
& {\text{Work Done,}}W{\text{ = Force }} \times {\text{ Displacement}} \cr
& {\text{Also, Force = Mass }} \times {\text{ Acceleration}} \cr
& \Rightarrow {\text{Work Done = Mass }} \times {\text{ Acceleration }} \times {\text{ Displacement}} \cr
& \Rightarrow W = \int {mavdt} \ldots \ldots \ldots \ldots \ldots \ldots \left( 3 \right) \cr} $
Complete solution Step-by-Step:
In order to solve this question first we need to find the force, F acting on the body of mass 3kgs. And then the distance travelled by the body in the given time period of 2 seconds. And thus finally the work done by the force in 2 seconds.
$\eqalign{
& {\text{Given:}} \cr
& {\text{ }}M = {\text{ }}3kg{\text{ }} \cr
& {\text{and }}s = \dfrac{{{t^3}}}{3} \cr} $
Differentiating s with respect to time t, we get:
$\eqalign{
& \dfrac{{ds}}{{dt}} = \dfrac{{d\left( {\dfrac{{{t^3}}}{3}} \right)}}{{dt}} \cr
& \Rightarrow \dfrac{{ds}}{{dt}} = \dfrac{{3{t^2}}}{3} \cr
& \Rightarrow \dfrac{{ds}}{{dt}} = {t^2} \cr
& \Rightarrow v = {t^2}{\text{ }}\left[ {\because \dfrac{{ds}}{{dt}} = v} \right] \cr} $
Again differentiating the above equation with respect to time t, we get:
$\eqalign{
& \dfrac{{dv}}{{dt}} = \dfrac{{d{t^2}}}{{dt}} \cr
& \Rightarrow \dfrac{{dv}}{{dt}} = 2t \cr
& \Rightarrow a = 2t{\text{ }}\left[ {\because \dfrac{{dv}}{{dt}} = a} \right] \cr} $
Now,
$\eqalign{
& {\text{Work Done, }}W = \int {mavdt} \cr
& \Rightarrow W = \int\limits_0^2 {m.2t.{t^2}} dt \cr
& \Rightarrow W = 2m\int\limits_0^2 {{t^3}} dt \cr
& \Rightarrow W = 2m\left| {\dfrac{{{t^4}}}{4}} \right|_0^2 \cr
& \Rightarrow W = 2 \times 3 \times \dfrac{{2 \times 2 \times 2 \times 2}}{4} \cr
& \Rightarrow W = 24J \cr} $
Hence the correct answer is A., i.e., 24 joules.
Note: Students make a lot of errors while applying the formulas of integral and differential calculus. For the above solution the formulas applicable are:
$\eqalign{
& \dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} \cr
& \int {{x^n}} dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C,{\text{where n}} \ne {\text{1}} \cr} $
Be sure to apply the formulas correctly and avoid silly calculation mistakes.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

