
A body of mass 3kg is under a force, which causes a displacement in it given by $s = \dfrac{{{t^3}}}{3}$
(in m). Find the Work done by the force in the first 2 seconds.
A). 24 J
B). 3.8 J
C). 5.2 J
D). 2.6 J
Answer
587.1k+ views
Hint: The definition of displacement, velocity, acceleration and work done with their mathematical expressions can be used to solve these types of questions. Students also need a good understanding of differential calculus as well as integral calculus to solve for the solution.
Formulas used:
$\eqalign{
& {\text{Velocity, }}v{\text{ }} = {\text{ }}\dfrac{{ds}}{{dt}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \left( 1 \right) \cr
& \Rightarrow ds = vdt{\text{ }}\left[ {by{\text{ rearranging equation}}\left( 1 \right)} \right] \cr
& \cr
& {\text{Acceleration, }}a = \dfrac{{dv}}{{dt}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \left( 2 \right) \cr
& {\text{Work Done,}}W{\text{ = Force }} \times {\text{ Displacement}} \cr
& {\text{Also, Force = Mass }} \times {\text{ Acceleration}} \cr
& \Rightarrow {\text{Work Done = Mass }} \times {\text{ Acceleration }} \times {\text{ Displacement}} \cr
& \Rightarrow W = \int {mavdt} \ldots \ldots \ldots \ldots \ldots \ldots \left( 3 \right) \cr} $
Complete solution Step-by-Step:
In order to solve this question first we need to find the force, F acting on the body of mass 3kgs. And then the distance travelled by the body in the given time period of 2 seconds. And thus finally the work done by the force in 2 seconds.
$\eqalign{
& {\text{Given:}} \cr
& {\text{ }}M = {\text{ }}3kg{\text{ }} \cr
& {\text{and }}s = \dfrac{{{t^3}}}{3} \cr} $
Differentiating s with respect to time t, we get:
$\eqalign{
& \dfrac{{ds}}{{dt}} = \dfrac{{d\left( {\dfrac{{{t^3}}}{3}} \right)}}{{dt}} \cr
& \Rightarrow \dfrac{{ds}}{{dt}} = \dfrac{{3{t^2}}}{3} \cr
& \Rightarrow \dfrac{{ds}}{{dt}} = {t^2} \cr
& \Rightarrow v = {t^2}{\text{ }}\left[ {\because \dfrac{{ds}}{{dt}} = v} \right] \cr} $
Again differentiating the above equation with respect to time t, we get:
$\eqalign{
& \dfrac{{dv}}{{dt}} = \dfrac{{d{t^2}}}{{dt}} \cr
& \Rightarrow \dfrac{{dv}}{{dt}} = 2t \cr
& \Rightarrow a = 2t{\text{ }}\left[ {\because \dfrac{{dv}}{{dt}} = a} \right] \cr} $
Now,
$\eqalign{
& {\text{Work Done, }}W = \int {mavdt} \cr
& \Rightarrow W = \int\limits_0^2 {m.2t.{t^2}} dt \cr
& \Rightarrow W = 2m\int\limits_0^2 {{t^3}} dt \cr
& \Rightarrow W = 2m\left| {\dfrac{{{t^4}}}{4}} \right|_0^2 \cr
& \Rightarrow W = 2 \times 3 \times \dfrac{{2 \times 2 \times 2 \times 2}}{4} \cr
& \Rightarrow W = 24J \cr} $
Hence the correct answer is A., i.e., 24 joules.
Note: Students make a lot of errors while applying the formulas of integral and differential calculus. For the above solution the formulas applicable are:
$\eqalign{
& \dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} \cr
& \int {{x^n}} dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C,{\text{where n}} \ne {\text{1}} \cr} $
Be sure to apply the formulas correctly and avoid silly calculation mistakes.
Formulas used:
$\eqalign{
& {\text{Velocity, }}v{\text{ }} = {\text{ }}\dfrac{{ds}}{{dt}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \left( 1 \right) \cr
& \Rightarrow ds = vdt{\text{ }}\left[ {by{\text{ rearranging equation}}\left( 1 \right)} \right] \cr
& \cr
& {\text{Acceleration, }}a = \dfrac{{dv}}{{dt}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \left( 2 \right) \cr
& {\text{Work Done,}}W{\text{ = Force }} \times {\text{ Displacement}} \cr
& {\text{Also, Force = Mass }} \times {\text{ Acceleration}} \cr
& \Rightarrow {\text{Work Done = Mass }} \times {\text{ Acceleration }} \times {\text{ Displacement}} \cr
& \Rightarrow W = \int {mavdt} \ldots \ldots \ldots \ldots \ldots \ldots \left( 3 \right) \cr} $
Complete solution Step-by-Step:
In order to solve this question first we need to find the force, F acting on the body of mass 3kgs. And then the distance travelled by the body in the given time period of 2 seconds. And thus finally the work done by the force in 2 seconds.
$\eqalign{
& {\text{Given:}} \cr
& {\text{ }}M = {\text{ }}3kg{\text{ }} \cr
& {\text{and }}s = \dfrac{{{t^3}}}{3} \cr} $
Differentiating s with respect to time t, we get:
$\eqalign{
& \dfrac{{ds}}{{dt}} = \dfrac{{d\left( {\dfrac{{{t^3}}}{3}} \right)}}{{dt}} \cr
& \Rightarrow \dfrac{{ds}}{{dt}} = \dfrac{{3{t^2}}}{3} \cr
& \Rightarrow \dfrac{{ds}}{{dt}} = {t^2} \cr
& \Rightarrow v = {t^2}{\text{ }}\left[ {\because \dfrac{{ds}}{{dt}} = v} \right] \cr} $
Again differentiating the above equation with respect to time t, we get:
$\eqalign{
& \dfrac{{dv}}{{dt}} = \dfrac{{d{t^2}}}{{dt}} \cr
& \Rightarrow \dfrac{{dv}}{{dt}} = 2t \cr
& \Rightarrow a = 2t{\text{ }}\left[ {\because \dfrac{{dv}}{{dt}} = a} \right] \cr} $
Now,
$\eqalign{
& {\text{Work Done, }}W = \int {mavdt} \cr
& \Rightarrow W = \int\limits_0^2 {m.2t.{t^2}} dt \cr
& \Rightarrow W = 2m\int\limits_0^2 {{t^3}} dt \cr
& \Rightarrow W = 2m\left| {\dfrac{{{t^4}}}{4}} \right|_0^2 \cr
& \Rightarrow W = 2 \times 3 \times \dfrac{{2 \times 2 \times 2 \times 2}}{4} \cr
& \Rightarrow W = 24J \cr} $
Hence the correct answer is A., i.e., 24 joules.
Note: Students make a lot of errors while applying the formulas of integral and differential calculus. For the above solution the formulas applicable are:
$\eqalign{
& \dfrac{d}{{dx}}\left( {{x^n}} \right) = n{x^{n - 1}} \cr
& \int {{x^n}} dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C,{\text{where n}} \ne {\text{1}} \cr} $
Be sure to apply the formulas correctly and avoid silly calculation mistakes.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

