A body is projected vertically upwards. The times corresponding to height \[H\] while ascending and while descending are \[{t_1}\] and \[{t_2}\] respectively. Then, the velocity of projection will be (take \[g\] as acceleration due to gravity)
(A) \[\dfrac{{g\sqrt {{t_1}{t_2}} }}{2}\]
(B) \[\dfrac{{g\left( {{t_1} + {t_2}} \right)}}{2}\]
(C) \[g\sqrt {{t_1}{t_2}} \]
(D) \[g\dfrac{{{t_1}{t_2}}}{{\left( {{t_1} + {t_2}} \right)}}\]
Answer
Verified
438k+ views
Hint: We need to use the second equation of motion to find the times at which the body will be at height \[H\]. With time as the unknown variable, the second equation of motion is a quadratic equation.
Formula used: In this solution we will be using the following formulae;
\[h = ut + \dfrac{1}{2}g{t^2}\] where \[h\] is the height of an object thrown vertically upward, \[u\] is the initial velocity of projection, \[g\] is the acceleration due to gravity, and \[t\] is the instantaneous time when at the height.
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\] for an equation \[a{x^2} + bx + c = 0\]
Complete Step-by-Step solution:
Generally, when a body is thrown upwards, any particular height is crossed twice, while going up and while coming down. The second equation of motion can be used to calculate the times when it crosses a particular height. This is given as
\[h = ut + \dfrac{1}{2}g{t^2}\] where \[h\] is the height of an object thrown vertically upward, \[u\] is the initial velocity of projection, \[g\] is the acceleration due to gravity, and \[t\] is the instantaneous time when at the height.
By inserting known values, we have
\[H = ut - \dfrac{1}{2}g{t^2}\]
\[ \Rightarrow g{t^2} - 2ut + 2H = 0\] which is a quadratic equation.
Hence, using the quadratic formula given by
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\] for an equation \[a{x^2} + bx + c = 0\].
Hence, we have
\[t = \dfrac{{2u \pm \sqrt {{{\left( {2u} \right)}^2} - 4\left( g \right)\left( {2H} \right)} }}{{2g}} = \dfrac{{2u \pm \sqrt {4{u^2} - 8gH} }}{{2g}}\]
By simplification, we have
\[t = \dfrac{{u \pm \sqrt {{u^2} - 2gH} }}{g}\]
Then the two different values of \[t\] are
\[{t_1} = \dfrac{{u - \sqrt {{u^2} - 2gH} }}{g}\]
and
\[{t_2} = \dfrac{{u + \sqrt {{u^2} - 2gH} }}{g}\]
By adding the two times, we have
\[{t_1} + {t_2} = \dfrac{{u + \sqrt {{u^2} - 2gH} }}{g} + \dfrac{{u - \sqrt {{u^2} - 2gH} }}{g} = \dfrac{{2u}}{g}\]
By making \[u\] subject, we have
\[u = \dfrac{{g\left( {{t_1} + {t_2}} \right)}}{2}\]
Hence, the correct option is B
Note: For clarity, the equation \[H = ut - \dfrac{1}{2}g{t^2}\] has been derived by allowing downward to be negative. This is a matter of choice, and hence upward can be taken as negative instead. However, note that when upward is negative the height \[h = - H\], and not \[H\], since the height is measured upward from the ground.
Formula used: In this solution we will be using the following formulae;
\[h = ut + \dfrac{1}{2}g{t^2}\] where \[h\] is the height of an object thrown vertically upward, \[u\] is the initial velocity of projection, \[g\] is the acceleration due to gravity, and \[t\] is the instantaneous time when at the height.
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\] for an equation \[a{x^2} + bx + c = 0\]
Complete Step-by-Step solution:
Generally, when a body is thrown upwards, any particular height is crossed twice, while going up and while coming down. The second equation of motion can be used to calculate the times when it crosses a particular height. This is given as
\[h = ut + \dfrac{1}{2}g{t^2}\] where \[h\] is the height of an object thrown vertically upward, \[u\] is the initial velocity of projection, \[g\] is the acceleration due to gravity, and \[t\] is the instantaneous time when at the height.
By inserting known values, we have
\[H = ut - \dfrac{1}{2}g{t^2}\]
\[ \Rightarrow g{t^2} - 2ut + 2H = 0\] which is a quadratic equation.
Hence, using the quadratic formula given by
\[x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\] for an equation \[a{x^2} + bx + c = 0\].
Hence, we have
\[t = \dfrac{{2u \pm \sqrt {{{\left( {2u} \right)}^2} - 4\left( g \right)\left( {2H} \right)} }}{{2g}} = \dfrac{{2u \pm \sqrt {4{u^2} - 8gH} }}{{2g}}\]
By simplification, we have
\[t = \dfrac{{u \pm \sqrt {{u^2} - 2gH} }}{g}\]
Then the two different values of \[t\] are
\[{t_1} = \dfrac{{u - \sqrt {{u^2} - 2gH} }}{g}\]
and
\[{t_2} = \dfrac{{u + \sqrt {{u^2} - 2gH} }}{g}\]
By adding the two times, we have
\[{t_1} + {t_2} = \dfrac{{u + \sqrt {{u^2} - 2gH} }}{g} + \dfrac{{u - \sqrt {{u^2} - 2gH} }}{g} = \dfrac{{2u}}{g}\]
By making \[u\] subject, we have
\[u = \dfrac{{g\left( {{t_1} + {t_2}} \right)}}{2}\]
Hence, the correct option is B
Note: For clarity, the equation \[H = ut - \dfrac{1}{2}g{t^2}\] has been derived by allowing downward to be negative. This is a matter of choice, and hence upward can be taken as negative instead. However, note that when upward is negative the height \[h = - H\], and not \[H\], since the height is measured upward from the ground.
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE