Answer
Verified
456k+ views
Hint:In order to solve this problem, first use the concept that at the maximum height point, the velocity of the body becomes zero. After then use the conservation of energy at points A and B. Where point A is the point of earth surface from which body was projected and point B is the maximum height point from which body comes back to earth.
Complete step by step answer:
Let the velocity of the body with which it was projected be V and radius of earth is R and mass M.
And given that the height attained by the body is equal to R.
We know that at maximum height point the velocity of the body becomes zero.
Now applying conservation of energy at the surface and at a height $h = R$
\[\Rightarrow {(K.E.)_A} + {(P.E.)_A} = {(K.E.)_B} + {(P.E.)_B}\]
$\Rightarrow \dfrac{1}{2}m{v^2} + \left( {\dfrac{{ - GMm}}{R}} \right) = 0 + \left( {\dfrac{{ - GMm}}{{2R}}} \right)$
$\Rightarrow \dfrac{1}{2}m{v^2} - \dfrac{{GMm}}{R} = \dfrac{{ - GMm}}{{2R}}$
$\Rightarrow \dfrac{1}{2}m{v^2} = \dfrac{{ - GMm}}{{2R}} + \dfrac{{GMm}}{R}$
$\Rightarrow \dfrac{1}{2}m{v^2} = \dfrac{{GMm}}{{2R}}$
$\Rightarrow {v^2} = \dfrac{{2GMm}}{{2mR}}$
$\Rightarrow {v^2} = \dfrac{{GM}}{R}$
$\therefore v = \sqrt {\dfrac{{GM}}{R}} $
So, the velocity of the body with which it was projected is $\sqrt {\dfrac{{GM}}{R}} $.
Hence, option A is the correct answer.
Note: In order to solve gravitational or satellite problems 2 methods are used.
1. Energy conservation method.
2. Equate centripetal force with the gravitational force.
i.e., $\dfrac{{m{v^2}}}{R} = \dfrac{{GMm}}{{{R^2}}}$
Complete step by step answer:
Let the velocity of the body with which it was projected be V and radius of earth is R and mass M.
And given that the height attained by the body is equal to R.
We know that at maximum height point the velocity of the body becomes zero.
Now applying conservation of energy at the surface and at a height $h = R$
\[\Rightarrow {(K.E.)_A} + {(P.E.)_A} = {(K.E.)_B} + {(P.E.)_B}\]
$\Rightarrow \dfrac{1}{2}m{v^2} + \left( {\dfrac{{ - GMm}}{R}} \right) = 0 + \left( {\dfrac{{ - GMm}}{{2R}}} \right)$
$\Rightarrow \dfrac{1}{2}m{v^2} - \dfrac{{GMm}}{R} = \dfrac{{ - GMm}}{{2R}}$
$\Rightarrow \dfrac{1}{2}m{v^2} = \dfrac{{ - GMm}}{{2R}} + \dfrac{{GMm}}{R}$
$\Rightarrow \dfrac{1}{2}m{v^2} = \dfrac{{GMm}}{{2R}}$
$\Rightarrow {v^2} = \dfrac{{2GMm}}{{2mR}}$
$\Rightarrow {v^2} = \dfrac{{GM}}{R}$
$\therefore v = \sqrt {\dfrac{{GM}}{R}} $
So, the velocity of the body with which it was projected is $\sqrt {\dfrac{{GM}}{R}} $.
Hence, option A is the correct answer.
Note: In order to solve gravitational or satellite problems 2 methods are used.
1. Energy conservation method.
2. Equate centripetal force with the gravitational force.
i.e., $\dfrac{{m{v^2}}}{R} = \dfrac{{GMm}}{{{R^2}}}$
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE