Answer
Verified
438.3k+ views
Hint: In this question we have been asked to calculate the ratio of the two strings. Now, we know that during elastic collision of the same masses the final velocity of the bob suspended by string will be the initial velocity for the bob of mass m suspended with string \[{{l}_{1}}\]. We also know the equation for minimum velocity of the string that is required to complete a full circle. Therefore, on equating the two quantities we can calculate the ratio of the strings.
Formula Used:
\[{{v}^{2}}={{u}^{2}}+2as\]
\[v=\sqrt{5gl}\]
Complete answer:
For a mass suspended with string we know that,
\[T-mgcos\theta =\dfrac{m{{V}^{2}}}{R}\]
At maximum height the tension should be zero for the mass to complete one full circle.
Therefore,
\[\dfrac{mV_{C}^{2}}{R}=-mgcos(180{}^\circ )\]
Therefore,
\[V_{C}^{2}=Rg\]
We can say,
\[{{V}_{C}}=\sqrt{Rg}\] ………….. (1)
Applying the energy conservation for highest and lowest point
We get,
\[\dfrac{1}{2}mV_{A}^{2}=\dfrac{1}{2}mV_{C}^{2}+2mgR\]
Therefore,
\[\dfrac{V_{A}^{2}}{2}=\dfrac{gR}{2}+2gR\]
On solving,
\[V_{A}^{2}=5gR\]
Therefore,
\[VA=\sqrt{5gR}\]
Therefore,
We know that minimum velocity of the string to complete a full circle is given by,
\[v=\sqrt{5gl}\]
Therefore, the initial velocity \[{{v}_{1}}\] of the bob at A will be given by,
\[{{v}_{1}}=\sqrt{5g{{l}_{1}}}\]
Now the velocity of the bob A when it collides with the bob B can be given by using a second kinematic equation.
\[{{v}^{2}}={{u}^{2}}+2as\]
s is the total distance i.e. \[2{{l}_{1}}\] acceleration will be negative acceleration due to gravity
Therefore,
\[{{v}_{1}}^{2}=5g{{l}_{1}}-2g\times 2{{l}_{1}}\]
Therefore,
\[{{v}_{1}}=\sqrt{g{{l}_{1}}}\]
After collision the bob B will gain initial velocity \[{{u}_{2}}\]. Therefore, conserving the momentum
We get,
\[m{{v}_{1}}=m{{u}_{2}}\]
Therefore,
\[{{v}_{1}}={{u}_{2}}\]
Now the initial velocity of the bob B is \[\sqrt{g{{l}_{1}}}\]. Now this initial velocity should be equal to the minimum velocity required to complete full revolution.
Therefore,
\[\sqrt{g{{l}_{1}}}=\sqrt{5g{{l}_{2}}}\]
Therefore, taking ratio
We get,
\[\dfrac{{{l}_{1}}}{{{l}_{2}}}=5\]
Therefore, the ratio \[\dfrac{{{l}_{1}}}{{{l}_{2}}}=5\]
Note:
Kinematic equations is the set of equations which states the motion of the object moving with constant acceleration. Considering the macro particles the kinematic equations prove to be very helpful. However, At the quantum level these equations render useless as the quantum world is small forces acting on them are different in nature.
Formula Used:
\[{{v}^{2}}={{u}^{2}}+2as\]
\[v=\sqrt{5gl}\]
Complete answer:
For a mass suspended with string we know that,
\[T-mgcos\theta =\dfrac{m{{V}^{2}}}{R}\]
At maximum height the tension should be zero for the mass to complete one full circle.
Therefore,
\[\dfrac{mV_{C}^{2}}{R}=-mgcos(180{}^\circ )\]
Therefore,
\[V_{C}^{2}=Rg\]
We can say,
\[{{V}_{C}}=\sqrt{Rg}\] ………….. (1)
Applying the energy conservation for highest and lowest point
We get,
\[\dfrac{1}{2}mV_{A}^{2}=\dfrac{1}{2}mV_{C}^{2}+2mgR\]
Therefore,
\[\dfrac{V_{A}^{2}}{2}=\dfrac{gR}{2}+2gR\]
On solving,
\[V_{A}^{2}=5gR\]
Therefore,
\[VA=\sqrt{5gR}\]
Therefore,
We know that minimum velocity of the string to complete a full circle is given by,
\[v=\sqrt{5gl}\]
Therefore, the initial velocity \[{{v}_{1}}\] of the bob at A will be given by,
\[{{v}_{1}}=\sqrt{5g{{l}_{1}}}\]
Now the velocity of the bob A when it collides with the bob B can be given by using a second kinematic equation.
\[{{v}^{2}}={{u}^{2}}+2as\]
s is the total distance i.e. \[2{{l}_{1}}\] acceleration will be negative acceleration due to gravity
Therefore,
\[{{v}_{1}}^{2}=5g{{l}_{1}}-2g\times 2{{l}_{1}}\]
Therefore,
\[{{v}_{1}}=\sqrt{g{{l}_{1}}}\]
After collision the bob B will gain initial velocity \[{{u}_{2}}\]. Therefore, conserving the momentum
We get,
\[m{{v}_{1}}=m{{u}_{2}}\]
Therefore,
\[{{v}_{1}}={{u}_{2}}\]
Now the initial velocity of the bob B is \[\sqrt{g{{l}_{1}}}\]. Now this initial velocity should be equal to the minimum velocity required to complete full revolution.
Therefore,
\[\sqrt{g{{l}_{1}}}=\sqrt{5g{{l}_{2}}}\]
Therefore, taking ratio
We get,
\[\dfrac{{{l}_{1}}}{{{l}_{2}}}=5\]
Therefore, the ratio \[\dfrac{{{l}_{1}}}{{{l}_{2}}}=5\]
Note:
Kinematic equations is the set of equations which states the motion of the object moving with constant acceleration. Considering the macro particles the kinematic equations prove to be very helpful. However, At the quantum level these equations render useless as the quantum world is small forces acting on them are different in nature.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Choose the antonym of the word given below Furious class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE