Answer
Verified
417.9k+ views
Hint: In this solution, we will first check for the maximum friction force that will act on the object and the maximum force that can be exerted on the object. The external force has to be greater than the friction force if the object has to be accelerated.
Formula used: In this solution, we will use the following formula
$ {F_f} = \mu mg $ where $ \mu $ is the coefficient of friction, $ m $ is the mass of the block, and $ g $ is the gravitational acceleration.
Complete step by step answer
We’ve been given that the force acting on the block is $ F = 2sin\omega t $ . Let us start by finding the maximum value of $ F $ . The value of $ F $ changes with time and the maximum value corresponds to $ \sin \omega t = 1 $ which is
$ F = 2 $
Now, the friction force acting on the object will be
$ {F_f} = 0.25 \times 1 \times 9.8 $
$ \Rightarrow {F_f} = 2.45\,N $
So we can see that friction force is greater than the external force acting on the object. Hence for no value of the external force will the body be accelerated.
Hence the correct choice is option (C).
Note
For the object to accelerate the external force must exceed $ 2.45\,N $ in which case it can overcome the friction force and be accelerated. The tricky part in this question is realizing that the maximum value of the external force will only depend on the maximum value of the sine function. This is because regardless of the angular frequency and the time of the external force, the maximum value it can ever attain is 1. All the other values of the forces at different times will be lower than $ 2\,N $ and hence the block can never be accelerated.
Formula used: In this solution, we will use the following formula
$ {F_f} = \mu mg $ where $ \mu $ is the coefficient of friction, $ m $ is the mass of the block, and $ g $ is the gravitational acceleration.
Complete step by step answer
We’ve been given that the force acting on the block is $ F = 2sin\omega t $ . Let us start by finding the maximum value of $ F $ . The value of $ F $ changes with time and the maximum value corresponds to $ \sin \omega t = 1 $ which is
$ F = 2 $
Now, the friction force acting on the object will be
$ {F_f} = 0.25 \times 1 \times 9.8 $
$ \Rightarrow {F_f} = 2.45\,N $
So we can see that friction force is greater than the external force acting on the object. Hence for no value of the external force will the body be accelerated.
Hence the correct choice is option (C).
Note
For the object to accelerate the external force must exceed $ 2.45\,N $ in which case it can overcome the friction force and be accelerated. The tricky part in this question is realizing that the maximum value of the external force will only depend on the maximum value of the sine function. This is because regardless of the angular frequency and the time of the external force, the maximum value it can ever attain is 1. All the other values of the forces at different times will be lower than $ 2\,N $ and hence the block can never be accelerated.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The mountain range which stretches from Gujarat in class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths