A bicycle is sold for 3,000 cash or for Rs 1,000 cash down payment followed by two monthly installments of Rs 1024 each. Compute the rate of interest charged under the installment scheme.
Last updated date: 23rd Mar 2023
•
Total views: 309k
•
Views today: 3.87k
Answer
309k+ views
Hint- Use the basic formula ${\text{Interest = }}\dfrac{{P \times R \times T}}{{100}}$, where P
is the Principle amount,R is the rate of interest, and T is the time duration.
There are two modes that are firstly you give cash RS 3000 or pay Rs 1000 down payment in the initial stages to get the bicycle.
Hence, ${\text{Principal amount = Rs}}\left( {3000 - 1000} \right) = 2000{\text{ Rs}}$
Now in case someone opts for down payment then they have to give Rs 1024 as installments for 2 months.
Hence, ${\text{Interest = (Time of installment}} \times {\text{Amount of installment) - Principal amount}}$
So, ${\text{Interest = 2}} \times {\text{1024 - 2000 = 2048 - 2000 = 48 Rs}}$
Now we know that ${\text{Interest = }}\dfrac{{P \times R \times T}}{{100}}$where P is principal value, R is rate of interest, T is duration of installments.
So substituting values
${\text{48 = }}\dfrac{{2000 \times R \times 2}}{{100 \times 12}}$ As we are taking time duration in years hence we have ${\text{T = }}\dfrac{2}{{12}}$
On solving we get ${\text{R = }}\dfrac{{48 \times 100 \times 12}}{{2000 \times 2}} = 14.4\% $
Note- While computing interest problems always keep hold of formulae of interest and always take time duration in terms of years and not months otherwise you may land up on the wrong answer.
is the Principle amount,R is the rate of interest, and T is the time duration.
There are two modes that are firstly you give cash RS 3000 or pay Rs 1000 down payment in the initial stages to get the bicycle.
Hence, ${\text{Principal amount = Rs}}\left( {3000 - 1000} \right) = 2000{\text{ Rs}}$
Now in case someone opts for down payment then they have to give Rs 1024 as installments for 2 months.
Hence, ${\text{Interest = (Time of installment}} \times {\text{Amount of installment) - Principal amount}}$
So, ${\text{Interest = 2}} \times {\text{1024 - 2000 = 2048 - 2000 = 48 Rs}}$
Now we know that ${\text{Interest = }}\dfrac{{P \times R \times T}}{{100}}$where P is principal value, R is rate of interest, T is duration of installments.
So substituting values
${\text{48 = }}\dfrac{{2000 \times R \times 2}}{{100 \times 12}}$ As we are taking time duration in years hence we have ${\text{T = }}\dfrac{2}{{12}}$
On solving we get ${\text{R = }}\dfrac{{48 \times 100 \times 12}}{{2000 \times 2}} = 14.4\% $
Note- While computing interest problems always keep hold of formulae of interest and always take time duration in terms of years and not months otherwise you may land up on the wrong answer.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
