Answer
Verified
494.4k+ views
Hint- Use the basic formula ${\text{Interest = }}\dfrac{{P \times R \times T}}{{100}}$, where P
is the Principle amount,R is the rate of interest, and T is the time duration.
There are two modes that are firstly you give cash RS 3000 or pay Rs 1000 down payment in the initial stages to get the bicycle.
Hence, ${\text{Principal amount = Rs}}\left( {3000 - 1000} \right) = 2000{\text{ Rs}}$
Now in case someone opts for down payment then they have to give Rs 1024 as installments for 2 months.
Hence, ${\text{Interest = (Time of installment}} \times {\text{Amount of installment) - Principal amount}}$
So, ${\text{Interest = 2}} \times {\text{1024 - 2000 = 2048 - 2000 = 48 Rs}}$
Now we know that ${\text{Interest = }}\dfrac{{P \times R \times T}}{{100}}$where P is principal value, R is rate of interest, T is duration of installments.
So substituting values
${\text{48 = }}\dfrac{{2000 \times R \times 2}}{{100 \times 12}}$ As we are taking time duration in years hence we have ${\text{T = }}\dfrac{2}{{12}}$
On solving we get ${\text{R = }}\dfrac{{48 \times 100 \times 12}}{{2000 \times 2}} = 14.4\% $
Note- While computing interest problems always keep hold of formulae of interest and always take time duration in terms of years and not months otherwise you may land up on the wrong answer.
is the Principle amount,R is the rate of interest, and T is the time duration.
There are two modes that are firstly you give cash RS 3000 or pay Rs 1000 down payment in the initial stages to get the bicycle.
Hence, ${\text{Principal amount = Rs}}\left( {3000 - 1000} \right) = 2000{\text{ Rs}}$
Now in case someone opts for down payment then they have to give Rs 1024 as installments for 2 months.
Hence, ${\text{Interest = (Time of installment}} \times {\text{Amount of installment) - Principal amount}}$
So, ${\text{Interest = 2}} \times {\text{1024 - 2000 = 2048 - 2000 = 48 Rs}}$
Now we know that ${\text{Interest = }}\dfrac{{P \times R \times T}}{{100}}$where P is principal value, R is rate of interest, T is duration of installments.
So substituting values
${\text{48 = }}\dfrac{{2000 \times R \times 2}}{{100 \times 12}}$ As we are taking time duration in years hence we have ${\text{T = }}\dfrac{2}{{12}}$
On solving we get ${\text{R = }}\dfrac{{48 \times 100 \times 12}}{{2000 \times 2}} = 14.4\% $
Note- While computing interest problems always keep hold of formulae of interest and always take time duration in terms of years and not months otherwise you may land up on the wrong answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE