
A bar magnet is dropped along the axis of a copper ring held horizontally. The acceleration of fall is
A. equal to g at the place.
B. less than g.
C. more than g.
D. depends upon diameter of the ring and length of the magnet.
Answer
524.4k+ views
Hint: The above problem can be resolved using the fundamentals of Lenz law, and the basic concept employed under the Lenz law. In this problem, it is given that the bar magnet is made to fall from a height, and we need to determine the magnitude of acceleration during the freefall. When the magnet is dropped, then there will be variation in the magnetic field, and this will cause the development of emf.
Complete step by step answer:
The mathematical expression for the magnetic flux is given as,
\[\phi = B \times A\]…………………………………………. (1)
Here, B is the magnetic field and A is the area of the coil.
As the bar magnet is falling, then due to this fall, there will be some change in the magnitude of magnetic field taking place in the coil of area A.
And if the magnitude of magnetic field changes, then from equation 1, one can observe the change in the magnitude of magnetic flux linked with the coil. This will lead to the development of induced emf (E) and by Lenz’s law, the current will flow in the direction, such that it opposes the change in the magnetic field. This in turn will oppose the motion of the bar magnet by the force experienced on the magnet due to current flow.
Therefore, the net acceleration of the bar magnet during the fall is less than the gravitational acceleration g
Note:
Try to understand the fact that, when the magnetic field changes, the emf will induce. And this induced emf will cause the current flow in the direction, where the opposition in the magnetic field is observed.
Complete step by step answer:
The mathematical expression for the magnetic flux is given as,
\[\phi = B \times A\]…………………………………………. (1)
Here, B is the magnetic field and A is the area of the coil.
As the bar magnet is falling, then due to this fall, there will be some change in the magnitude of magnetic field taking place in the coil of area A.
And if the magnitude of magnetic field changes, then from equation 1, one can observe the change in the magnitude of magnetic flux linked with the coil. This will lead to the development of induced emf (E) and by Lenz’s law, the current will flow in the direction, such that it opposes the change in the magnetic field. This in turn will oppose the motion of the bar magnet by the force experienced on the magnet due to current flow.
Therefore, the net acceleration of the bar magnet during the fall is less than the gravitational acceleration g
Note:
Try to understand the fact that, when the magnetic field changes, the emf will induce. And this induced emf will cause the current flow in the direction, where the opposition in the magnetic field is observed.
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE
