A balloon which always remains spherical has a variable radius. Find the rate at which its volume is increasing with the radius when the latter is 10cm.
Answer
Verified
504.9k+ views
Hint: Take radius and volume of spherical balloons r and v. Find the volume of balloon and differentiate it w.r.t r. Then find \[\dfrac{dv}{dr}\]when r = 10cm. Thus find the rate at which the volume is increasing.
Complete step-by-step answer:
We know that a balloon is in spherical shape. Let us consider ‘r’ as the radius of the balloon which is spherical.
Let ‘v’ be the volume of the balloon.
Here we need to find the rate at which the balloon’s volume is increasing when the radius r is 10cm.
i.e. here we need to find the change of volume with respect to the radius, when r = 10.
\[\therefore \]We need to find \[\dfrac{dv}{dr}\]when r = 10cm.
We know the volume of the sphere is given by the formula \[\dfrac{4}{3}\pi {{r}^{3}}\].
\[\therefore \]Volume of sphere\[=\dfrac{4}{3}\pi {{r}^{3}}\]
i.e. \[V=\dfrac{4}{3}\pi {{r}^{3}}\]
Let us differentiate the above equation w.r.t radius r.
\[\begin{align}
& \dfrac{dv}{dr}=\dfrac{4}{3}\pi \dfrac{d}{dr}{{\left( r \right)}^{3}} \\
& \Rightarrow \dfrac{dv}{dr}=\dfrac{4}{3}\pi \times 3{{r}^{2}} \\
\end{align}\]
Cancel out the like terms and we get,
\[\dfrac{dv}{dr}=4\pi {{r}^{2}}\]
We need to find the value of \[\dfrac{dv}{dr}\]when r = 10.
\[\begin{align}
& \therefore \dfrac{dv}{dr}=4\times \pi \times {{10}^{2}} \\
& \dfrac{dv}{dr}=4\times \pi \times 10\times 10 \\
& \dfrac{dv}{dr}=400\pi \\
\end{align}\]
The volume is in \[c{{m}^{3}}\]and the radius is in cm.
So, \[\dfrac{dv}{dr}=400\pi \dfrac{c{{m}^{3}}}{cm}\]
Hence the volume is increasing at the rate of \[400\pi \dfrac{c{{m}^{3}}}{cm}\]when r = 10cm.
Note: Here the rate of increase in volume of the balloon signified the change in the shape as well. So the rate of change in the increase in the volume w.r.t the original shape of the balloon. Thus, as it changes the volume of the balloon changes, which is spherical in shape. That’s why we consider the formula of a sphere to differentiate it w.r.t radius r.
Complete step-by-step answer:
We know that a balloon is in spherical shape. Let us consider ‘r’ as the radius of the balloon which is spherical.
Let ‘v’ be the volume of the balloon.
Here we need to find the rate at which the balloon’s volume is increasing when the radius r is 10cm.
i.e. here we need to find the change of volume with respect to the radius, when r = 10.
\[\therefore \]We need to find \[\dfrac{dv}{dr}\]when r = 10cm.
We know the volume of the sphere is given by the formula \[\dfrac{4}{3}\pi {{r}^{3}}\].
\[\therefore \]Volume of sphere\[=\dfrac{4}{3}\pi {{r}^{3}}\]
i.e. \[V=\dfrac{4}{3}\pi {{r}^{3}}\]
Let us differentiate the above equation w.r.t radius r.
\[\begin{align}
& \dfrac{dv}{dr}=\dfrac{4}{3}\pi \dfrac{d}{dr}{{\left( r \right)}^{3}} \\
& \Rightarrow \dfrac{dv}{dr}=\dfrac{4}{3}\pi \times 3{{r}^{2}} \\
\end{align}\]
Cancel out the like terms and we get,
\[\dfrac{dv}{dr}=4\pi {{r}^{2}}\]
We need to find the value of \[\dfrac{dv}{dr}\]when r = 10.
\[\begin{align}
& \therefore \dfrac{dv}{dr}=4\times \pi \times {{10}^{2}} \\
& \dfrac{dv}{dr}=4\times \pi \times 10\times 10 \\
& \dfrac{dv}{dr}=400\pi \\
\end{align}\]
The volume is in \[c{{m}^{3}}\]and the radius is in cm.
So, \[\dfrac{dv}{dr}=400\pi \dfrac{c{{m}^{3}}}{cm}\]
Hence the volume is increasing at the rate of \[400\pi \dfrac{c{{m}^{3}}}{cm}\]when r = 10cm.
Note: Here the rate of increase in volume of the balloon signified the change in the shape as well. So the rate of change in the increase in the volume w.r.t the original shape of the balloon. Thus, as it changes the volume of the balloon changes, which is spherical in shape. That’s why we consider the formula of a sphere to differentiate it w.r.t radius r.
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
10 examples of friction in our daily life
What problem did Carter face when he reached the mummy class 11 english CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE