
A balloon which always remains spherical has a variable radius. Find the rate at which its volume is increasing with the radius when the latter is 10cm.
Answer
608.4k+ views
Hint: Take radius and volume of spherical balloons r and v. Find the volume of balloon and differentiate it w.r.t r. Then find \[\dfrac{dv}{dr}\]when r = 10cm. Thus find the rate at which the volume is increasing.
Complete step-by-step answer:
We know that a balloon is in spherical shape. Let us consider ‘r’ as the radius of the balloon which is spherical.
Let ‘v’ be the volume of the balloon.
Here we need to find the rate at which the balloon’s volume is increasing when the radius r is 10cm.
i.e. here we need to find the change of volume with respect to the radius, when r = 10.
\[\therefore \]We need to find \[\dfrac{dv}{dr}\]when r = 10cm.
We know the volume of the sphere is given by the formula \[\dfrac{4}{3}\pi {{r}^{3}}\].
\[\therefore \]Volume of sphere\[=\dfrac{4}{3}\pi {{r}^{3}}\]
i.e. \[V=\dfrac{4}{3}\pi {{r}^{3}}\]
Let us differentiate the above equation w.r.t radius r.
\[\begin{align}
& \dfrac{dv}{dr}=\dfrac{4}{3}\pi \dfrac{d}{dr}{{\left( r \right)}^{3}} \\
& \Rightarrow \dfrac{dv}{dr}=\dfrac{4}{3}\pi \times 3{{r}^{2}} \\
\end{align}\]
Cancel out the like terms and we get,
\[\dfrac{dv}{dr}=4\pi {{r}^{2}}\]
We need to find the value of \[\dfrac{dv}{dr}\]when r = 10.
\[\begin{align}
& \therefore \dfrac{dv}{dr}=4\times \pi \times {{10}^{2}} \\
& \dfrac{dv}{dr}=4\times \pi \times 10\times 10 \\
& \dfrac{dv}{dr}=400\pi \\
\end{align}\]
The volume is in \[c{{m}^{3}}\]and the radius is in cm.
So, \[\dfrac{dv}{dr}=400\pi \dfrac{c{{m}^{3}}}{cm}\]
Hence the volume is increasing at the rate of \[400\pi \dfrac{c{{m}^{3}}}{cm}\]when r = 10cm.
Note: Here the rate of increase in volume of the balloon signified the change in the shape as well. So the rate of change in the increase in the volume w.r.t the original shape of the balloon. Thus, as it changes the volume of the balloon changes, which is spherical in shape. That’s why we consider the formula of a sphere to differentiate it w.r.t radius r.
Complete step-by-step answer:
We know that a balloon is in spherical shape. Let us consider ‘r’ as the radius of the balloon which is spherical.
Let ‘v’ be the volume of the balloon.
Here we need to find the rate at which the balloon’s volume is increasing when the radius r is 10cm.
i.e. here we need to find the change of volume with respect to the radius, when r = 10.
\[\therefore \]We need to find \[\dfrac{dv}{dr}\]when r = 10cm.
We know the volume of the sphere is given by the formula \[\dfrac{4}{3}\pi {{r}^{3}}\].
\[\therefore \]Volume of sphere\[=\dfrac{4}{3}\pi {{r}^{3}}\]
i.e. \[V=\dfrac{4}{3}\pi {{r}^{3}}\]
Let us differentiate the above equation w.r.t radius r.
\[\begin{align}
& \dfrac{dv}{dr}=\dfrac{4}{3}\pi \dfrac{d}{dr}{{\left( r \right)}^{3}} \\
& \Rightarrow \dfrac{dv}{dr}=\dfrac{4}{3}\pi \times 3{{r}^{2}} \\
\end{align}\]
Cancel out the like terms and we get,
\[\dfrac{dv}{dr}=4\pi {{r}^{2}}\]
We need to find the value of \[\dfrac{dv}{dr}\]when r = 10.
\[\begin{align}
& \therefore \dfrac{dv}{dr}=4\times \pi \times {{10}^{2}} \\
& \dfrac{dv}{dr}=4\times \pi \times 10\times 10 \\
& \dfrac{dv}{dr}=400\pi \\
\end{align}\]
The volume is in \[c{{m}^{3}}\]and the radius is in cm.
So, \[\dfrac{dv}{dr}=400\pi \dfrac{c{{m}^{3}}}{cm}\]
Hence the volume is increasing at the rate of \[400\pi \dfrac{c{{m}^{3}}}{cm}\]when r = 10cm.
Note: Here the rate of increase in volume of the balloon signified the change in the shape as well. So the rate of change in the increase in the volume w.r.t the original shape of the balloon. Thus, as it changes the volume of the balloon changes, which is spherical in shape. That’s why we consider the formula of a sphere to differentiate it w.r.t radius r.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

