
A ball of mass $1g$ and charge ${10^{ - 8}}C$ moves from A, where potential is $600V$ , to B, where potential is 0. The velocity of the ball at B is $20cm/s$ . The velocity of the ball at point A must have been:
(A) $16.8cm/s$
(B) $22.8cm/s$
(C) $228cm/s$
(D) $168cm/s$
Answer
443.4k+ views
Hint: Energy is a property that can be transferred to or from an object in order to perform work. Energy can only be transferred from one state to another but cannot be created or destroyed. For example, in an object at rest, it possesses potential energy while when the body is in motion it possesses kinetic energy.
Formulas used: We will be using the formula to find the kinetic energy of a body, $KE = \dfrac{1}{2}m{v^2}$ where $KE$ is the kinetic energy of the body, $m$ is the mass of the body, and $v$ is the kinetic energy of the body.
We will also be using the formula to find the electric energy, ${E_{elec}} = Q \times V$ where ${E_{elec}}$ is the electrical energy of the body, $Q$ is the charge carried by the body, and $V$ is the electric potential of the charge carrying body.
Complete Step by Step answer:
We know that energy of a body can either be transformed or stored in them, but can never be created or destroyed. Thus, the energy in any system at any point of time is always conserved.
From the problem we can infer that the ball has a mass of $m = 1g = {10^{ - 3}}kg$ and the charge on the ball is $Q = {10^{ - 8}}C$ . We also know that the ball is moving from point A to point B, where the potential at point A is ${V_A} = 600V$ while the electric potential and point B is ${V_B} = 0V$ . We are also given the velocity of the ball at point B which is ${v_B} = 20cm/s = 0.2cm/s$ and we are required to find the velocity of the ball at point A.
Since the energy of the system needs to be conserved, we know that the change in kinetic energy of the ball will be equal to the change in electric potential energy of the ball due to the charges on it.
Change in Kinetic energy of the ball is given by, $\Delta KE = \dfrac{1}{2}m{v_B}^2 - \dfrac{1}{2}mv_A^2$ and the change in electric potential energy of the ball is given by, $\Delta {E_{elec}} = \left( {Q \times {V_B}} \right) - \left( {Q \times {V_A}} \right)$ .
According to the law of conservation of energy,
$\dfrac{1}{2}m{v_B}^2 - \dfrac{1}{2}mv_A^2 = \left( {Q \times {V_B}} \right) - \left( {Q \times {V_A}} \right)$
$\dfrac{1}{2}m\left( {{v_B}^2 - v_A^2} \right) = Q\left( {{V_B} - {V_A}} \right)$
Substituting the known values, we get
$\dfrac{1}{2} \times {10^{ - 3}} \times \left( {{{\left( {0.2} \right)}^2} - v_A^2} \right) = {10^{ - 8}} \times \left( {0 - 600} \right)$
${\left( {0.2} \right)^2} - v_A^2 = \dfrac{{{{10}^{ - 8}} \times 600 \times 2}}{{{{10}^{ - 3}}}}$
Simplifying the equation, we get,
${\left( {0.2} \right)^2} - v_A^2 = 12 \times {10^{ - 3}}$
$v_A^2 = 12 \times {10^{ - 3}} + 40 \times {10^{ - 3}}$
Now solving and applying square root on both sides we get,
\[{v_A} = \sqrt {52 \times {{10}^{ - 3}}} \]
$ \Rightarrow {v_A} = 0.228m/s$
Thus, the velocity at point A will be ${v_A} = 22.8cm/s$ .
Hence the correct answer will be option B.
Note: We can see that the kinetic energy of the body is conserved as the electrical potential energy in this system. If considered in a magnetic energy system, the energy will still be conserved.
Formulas used: We will be using the formula to find the kinetic energy of a body, $KE = \dfrac{1}{2}m{v^2}$ where $KE$ is the kinetic energy of the body, $m$ is the mass of the body, and $v$ is the kinetic energy of the body.
We will also be using the formula to find the electric energy, ${E_{elec}} = Q \times V$ where ${E_{elec}}$ is the electrical energy of the body, $Q$ is the charge carried by the body, and $V$ is the electric potential of the charge carrying body.
Complete Step by Step answer:
We know that energy of a body can either be transformed or stored in them, but can never be created or destroyed. Thus, the energy in any system at any point of time is always conserved.
From the problem we can infer that the ball has a mass of $m = 1g = {10^{ - 3}}kg$ and the charge on the ball is $Q = {10^{ - 8}}C$ . We also know that the ball is moving from point A to point B, where the potential at point A is ${V_A} = 600V$ while the electric potential and point B is ${V_B} = 0V$ . We are also given the velocity of the ball at point B which is ${v_B} = 20cm/s = 0.2cm/s$ and we are required to find the velocity of the ball at point A.
Since the energy of the system needs to be conserved, we know that the change in kinetic energy of the ball will be equal to the change in electric potential energy of the ball due to the charges on it.
Change in Kinetic energy of the ball is given by, $\Delta KE = \dfrac{1}{2}m{v_B}^2 - \dfrac{1}{2}mv_A^2$ and the change in electric potential energy of the ball is given by, $\Delta {E_{elec}} = \left( {Q \times {V_B}} \right) - \left( {Q \times {V_A}} \right)$ .
According to the law of conservation of energy,
$\dfrac{1}{2}m{v_B}^2 - \dfrac{1}{2}mv_A^2 = \left( {Q \times {V_B}} \right) - \left( {Q \times {V_A}} \right)$
$\dfrac{1}{2}m\left( {{v_B}^2 - v_A^2} \right) = Q\left( {{V_B} - {V_A}} \right)$
Substituting the known values, we get
$\dfrac{1}{2} \times {10^{ - 3}} \times \left( {{{\left( {0.2} \right)}^2} - v_A^2} \right) = {10^{ - 8}} \times \left( {0 - 600} \right)$
${\left( {0.2} \right)^2} - v_A^2 = \dfrac{{{{10}^{ - 8}} \times 600 \times 2}}{{{{10}^{ - 3}}}}$
Simplifying the equation, we get,
${\left( {0.2} \right)^2} - v_A^2 = 12 \times {10^{ - 3}}$
$v_A^2 = 12 \times {10^{ - 3}} + 40 \times {10^{ - 3}}$
Now solving and applying square root on both sides we get,
\[{v_A} = \sqrt {52 \times {{10}^{ - 3}}} \]
$ \Rightarrow {v_A} = 0.228m/s$
Thus, the velocity at point A will be ${v_A} = 22.8cm/s$ .
Hence the correct answer will be option B.
Note: We can see that the kinetic energy of the body is conserved as the electrical potential energy in this system. If considered in a magnetic energy system, the energy will still be conserved.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success

Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE

The highest possible oxidation states of Uranium and class 11 chemistry CBSE

Find the value of x if the mode of the following data class 11 maths CBSE

Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE

A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE

Trending doubts
10 examples of friction in our daily life

Difference Between Prokaryotic Cells and Eukaryotic Cells

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

What organs are located on the left side of your body class 11 biology CBSE

Define least count of vernier callipers How do you class 11 physics CBSE
