A ball is projected from the point O with velocity 20 m/s at an angle of 60° with the horizontal as shown in the figure. At the highest point of its trajectory, it strikes a smooth plane of inclination 30° at point A. The collision is perfectly inelastic. The maximum height from the ground is attained by the ball is
A. 18.75 m
B. 15 m
C. 22.5 m
D. 20.25 m
Answer
Verified
468k+ views
Hint: At the highest point of the trajectory of the ball, the ball will have no vertical component of velocity. As the collision is inelastic, the ball will not bounce back but with all its horizontal velocity, it will try to move some height up on the incline.
Formula used:
Maximum height of the trajectory:
$H = \dfrac{u^2 \sin ^2 \theta}{2 g}$
Third law of motion:
$v_f^2 - v_i^2 = 2 g h$
Complete answer:
First we determine the maximum height attained by the ball when it begins with initial velocity, u =20 m/s and is fired at an angle of 60$^{\circ}$ with the horizontal. Substituting the values in the formula we may write:
$H = \dfrac{(20)^2 (\sqrt{3} / 2)^2 }{2 \times 10} = 15 m$
Therefore, the ball attains a height of 15 m before its collision with the incline.
Now, the ball at a height of 15 m, has only horizontal component of its initial velocity sustaining. Let us denote the horizontal component as $u_x$, so that
$u_x = u \cos 60^{\circ} = 20 \times \dfrac{1}{2} = 10 $ m/s.
This is the velocity of the ball in horizontal direction, before colliding with the incline.
Now, refer to the following diagram and observe the velocity component that the ball will have along the incline.
The velocity of the ball as it starts along the incline can be written as:
$v = u_x \cos 30^{\circ} = \dfrac{10 \times \sqrt{3}}{2} = 5 \sqrt{3}$ m/s.
Now, we consider the point where the ball hits the incline to be ground. We write final v = 0 m/s in the third law of motion. Therefore we get the height that again the ball attains along the incline by using the formula:
$v_i^2 = 2 g h'$
$\implies h' = \dfrac{(5 \sqrt{3})^2}{2 \times 10} = 3.75 m$
here $v_i$ is the initial velocity of the ball that it has before starting to climb along the incline.
Therefore, the total height that the ball will attain will be 15 m + 3.75 m = 18.75 m.
So, the correct answer is “Option A”.
Note:
One might conclude the wrong answer if one thinks that after striking the inclined plane, the ball completely stops and drops to ground along the incline. In that case one might only find the maximum height of the ball along its trajectory and not the total height that ball attains including along inclined plane.
Formula used:
Maximum height of the trajectory:
$H = \dfrac{u^2 \sin ^2 \theta}{2 g}$
Third law of motion:
$v_f^2 - v_i^2 = 2 g h$
Complete answer:
First we determine the maximum height attained by the ball when it begins with initial velocity, u =20 m/s and is fired at an angle of 60$^{\circ}$ with the horizontal. Substituting the values in the formula we may write:
$H = \dfrac{(20)^2 (\sqrt{3} / 2)^2 }{2 \times 10} = 15 m$
Therefore, the ball attains a height of 15 m before its collision with the incline.
Now, the ball at a height of 15 m, has only horizontal component of its initial velocity sustaining. Let us denote the horizontal component as $u_x$, so that
$u_x = u \cos 60^{\circ} = 20 \times \dfrac{1}{2} = 10 $ m/s.
This is the velocity of the ball in horizontal direction, before colliding with the incline.
Now, refer to the following diagram and observe the velocity component that the ball will have along the incline.
The velocity of the ball as it starts along the incline can be written as:
$v = u_x \cos 30^{\circ} = \dfrac{10 \times \sqrt{3}}{2} = 5 \sqrt{3}$ m/s.
Now, we consider the point where the ball hits the incline to be ground. We write final v = 0 m/s in the third law of motion. Therefore we get the height that again the ball attains along the incline by using the formula:
$v_i^2 = 2 g h'$
$\implies h' = \dfrac{(5 \sqrt{3})^2}{2 \times 10} = 3.75 m$
here $v_i$ is the initial velocity of the ball that it has before starting to climb along the incline.
Therefore, the total height that the ball will attain will be 15 m + 3.75 m = 18.75 m.
So, the correct answer is “Option A”.
Note:
One might conclude the wrong answer if one thinks that after striking the inclined plane, the ball completely stops and drops to ground along the incline. In that case one might only find the maximum height of the ball along its trajectory and not the total height that ball attains including along inclined plane.
Recently Updated Pages
How to find how many moles are in an ion I am given class 11 chemistry CBSE
Class 11 Question and Answer - Your Ultimate Solutions Guide
Identify how many lines of symmetry drawn are there class 8 maths CBSE
State true or false If two lines intersect and if one class 8 maths CBSE
Tina had 20m 5cm long cloth She cuts 4m 50cm lengt-class-8-maths-CBSE
Which sentence is punctuated correctly A Always ask class 8 english CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE