Answer
Verified
436.5k+ views
Hint: At the highest point of the trajectory of the ball, the ball will have no vertical component of velocity. As the collision is inelastic, the ball will not bounce back but with all its horizontal velocity, it will try to move some height up on the incline.
Formula used:
Maximum height of the trajectory:
$H = \dfrac{u^2 \sin ^2 \theta}{2 g}$
Third law of motion:
$v_f^2 - v_i^2 = 2 g h$
Complete answer:
First we determine the maximum height attained by the ball when it begins with initial velocity, u =20 m/s and is fired at an angle of 60$^{\circ}$ with the horizontal. Substituting the values in the formula we may write:
$H = \dfrac{(20)^2 (\sqrt{3} / 2)^2 }{2 \times 10} = 15 m$
Therefore, the ball attains a height of 15 m before its collision with the incline.
Now, the ball at a height of 15 m, has only horizontal component of its initial velocity sustaining. Let us denote the horizontal component as $u_x$, so that
$u_x = u \cos 60^{\circ} = 20 \times \dfrac{1}{2} = 10 $ m/s.
This is the velocity of the ball in horizontal direction, before colliding with the incline.
Now, refer to the following diagram and observe the velocity component that the ball will have along the incline.
The velocity of the ball as it starts along the incline can be written as:
$v = u_x \cos 30^{\circ} = \dfrac{10 \times \sqrt{3}}{2} = 5 \sqrt{3}$ m/s.
Now, we consider the point where the ball hits the incline to be ground. We write final v = 0 m/s in the third law of motion. Therefore we get the height that again the ball attains along the incline by using the formula:
$v_i^2 = 2 g h'$
$\implies h' = \dfrac{(5 \sqrt{3})^2}{2 \times 10} = 3.75 m$
here $v_i$ is the initial velocity of the ball that it has before starting to climb along the incline.
Therefore, the total height that the ball will attain will be 15 m + 3.75 m = 18.75 m.
So, the correct answer is “Option A”.
Note:
One might conclude the wrong answer if one thinks that after striking the inclined plane, the ball completely stops and drops to ground along the incline. In that case one might only find the maximum height of the ball along its trajectory and not the total height that ball attains including along inclined plane.
Formula used:
Maximum height of the trajectory:
$H = \dfrac{u^2 \sin ^2 \theta}{2 g}$
Third law of motion:
$v_f^2 - v_i^2 = 2 g h$
Complete answer:
First we determine the maximum height attained by the ball when it begins with initial velocity, u =20 m/s and is fired at an angle of 60$^{\circ}$ with the horizontal. Substituting the values in the formula we may write:
$H = \dfrac{(20)^2 (\sqrt{3} / 2)^2 }{2 \times 10} = 15 m$
Therefore, the ball attains a height of 15 m before its collision with the incline.
Now, the ball at a height of 15 m, has only horizontal component of its initial velocity sustaining. Let us denote the horizontal component as $u_x$, so that
$u_x = u \cos 60^{\circ} = 20 \times \dfrac{1}{2} = 10 $ m/s.
This is the velocity of the ball in horizontal direction, before colliding with the incline.
Now, refer to the following diagram and observe the velocity component that the ball will have along the incline.
The velocity of the ball as it starts along the incline can be written as:
$v = u_x \cos 30^{\circ} = \dfrac{10 \times \sqrt{3}}{2} = 5 \sqrt{3}$ m/s.
Now, we consider the point where the ball hits the incline to be ground. We write final v = 0 m/s in the third law of motion. Therefore we get the height that again the ball attains along the incline by using the formula:
$v_i^2 = 2 g h'$
$\implies h' = \dfrac{(5 \sqrt{3})^2}{2 \times 10} = 3.75 m$
here $v_i$ is the initial velocity of the ball that it has before starting to climb along the incline.
Therefore, the total height that the ball will attain will be 15 m + 3.75 m = 18.75 m.
So, the correct answer is “Option A”.
Note:
One might conclude the wrong answer if one thinks that after striking the inclined plane, the ball completely stops and drops to ground along the incline. In that case one might only find the maximum height of the ball along its trajectory and not the total height that ball attains including along inclined plane.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The polyarch xylem is found in case of a Monocot leaf class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Casparian strips are present in of the root A Epiblema class 12 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE