Answer

Verified

449.1k+ views

Hint: The given question is related to probability. The number of ways of selecting $r$ things from $n$ different things is given by $^{n}{{C}_{r}}$ , where $^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ .

Complete step-by-step answer:

Before proceeding with the question, we must know the definition of probability. The probability of an event $X$ is defined as the ratio of the number of outcomes favorable to the event $X$ and the total number of possible outcomes in the sample space. Mathematically,’

$P\left( X \right)=\dfrac{n\left( X \right)}{n\left( s \right)}...............\left( 1 \right)$

In the question, it is given that there are$6$ red, $8$black, and $4$ white balls in a bag. So, there are $18$ balls in total. When one ball is selected at random, the number of possible outcomes in the sample space will be the number of ways in which one ball can be selected from $18$ different balls. We know, the number of ways of selecting $r$ things from $n$ different things is given by $^{n}{{C}_{r}}$ , where $^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ . So, the number of ways in which one ball can be selected from $18$ different balls is given by $^{18}{{C}_{1}}$ . The value of $^{18}{{C}_{1}}$ can be evaluated as $^{18}{{C}_{1}}=\dfrac{18!}{1!\left( 18-1 \right)!}=\dfrac{18!}{1!\left( 17 \right)!}$ . We know, $n!=n\left( n-1 \right)!$ . So, $^{18}{{C}_{1}}=\dfrac{18\times 17!}{\left( 17 \right)!}=18$ . So, $n\left( s \right)=18$ .

Now, we have to find the probability that the chosen ball is not black. So, if the ball is not black, then there are two possibilities, i.e. either the ball is red or the ball is white. So, the number of favorable outcomes is the number of ways of selecting either a red ball or a white ball. So, we have to find the number of ways in which the chosen ball is one of the \[10\] balls that are either red or white. So, the number of ways of choosing $1$ ball from $10$ balls is given as $^{10}{{C}_{1}}=\dfrac{10!}{1!\left( 10-1 \right)!}=\dfrac{10!}{1!\left( 9 \right)!}=10$ . So, $n\left( X \right)=10$ .

Hence, the probability is given as $P\left( X \right)=\dfrac{10}{18}=\dfrac{5}{9}$ .

Hence, the probability that a ball drawn from a bag containing $6$ red, $8$black, and $4$ white balls is not black is equal to $\dfrac{5}{9}$ .

Note: Students generally get confused in the expansions of $^{n}{{C}_{r}}$ and $^{n}{{P}_{r}}$. The expansion of $^{n}{{C}_{r}}$ is given as $^{n}{{C}_{r}}=\dfrac{n!}{r!(n-r)!}$ and the expansion of $^{n}{{P}_{r}}$ is given as $^{n}{{P}_{r}}=\dfrac{n!}{(n-r)!}$.

Complete step-by-step answer:

Before proceeding with the question, we must know the definition of probability. The probability of an event $X$ is defined as the ratio of the number of outcomes favorable to the event $X$ and the total number of possible outcomes in the sample space. Mathematically,’

$P\left( X \right)=\dfrac{n\left( X \right)}{n\left( s \right)}...............\left( 1 \right)$

In the question, it is given that there are$6$ red, $8$black, and $4$ white balls in a bag. So, there are $18$ balls in total. When one ball is selected at random, the number of possible outcomes in the sample space will be the number of ways in which one ball can be selected from $18$ different balls. We know, the number of ways of selecting $r$ things from $n$ different things is given by $^{n}{{C}_{r}}$ , where $^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$ . So, the number of ways in which one ball can be selected from $18$ different balls is given by $^{18}{{C}_{1}}$ . The value of $^{18}{{C}_{1}}$ can be evaluated as $^{18}{{C}_{1}}=\dfrac{18!}{1!\left( 18-1 \right)!}=\dfrac{18!}{1!\left( 17 \right)!}$ . We know, $n!=n\left( n-1 \right)!$ . So, $^{18}{{C}_{1}}=\dfrac{18\times 17!}{\left( 17 \right)!}=18$ . So, $n\left( s \right)=18$ .

Now, we have to find the probability that the chosen ball is not black. So, if the ball is not black, then there are two possibilities, i.e. either the ball is red or the ball is white. So, the number of favorable outcomes is the number of ways of selecting either a red ball or a white ball. So, we have to find the number of ways in which the chosen ball is one of the \[10\] balls that are either red or white. So, the number of ways of choosing $1$ ball from $10$ balls is given as $^{10}{{C}_{1}}=\dfrac{10!}{1!\left( 10-1 \right)!}=\dfrac{10!}{1!\left( 9 \right)!}=10$ . So, $n\left( X \right)=10$ .

Hence, the probability is given as $P\left( X \right)=\dfrac{10}{18}=\dfrac{5}{9}$ .

Hence, the probability that a ball drawn from a bag containing $6$ red, $8$black, and $4$ white balls is not black is equal to $\dfrac{5}{9}$ .

Note: Students generally get confused in the expansions of $^{n}{{C}_{r}}$ and $^{n}{{P}_{r}}$. The expansion of $^{n}{{C}_{r}}$ is given as $^{n}{{C}_{r}}=\dfrac{n!}{r!(n-r)!}$ and the expansion of $^{n}{{P}_{r}}$ is given as $^{n}{{P}_{r}}=\dfrac{n!}{(n-r)!}$.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE