Answer
Verified
449.1k+ views
Hint: Probability of any given event is equal to the ratio of the favourable outcomes with the total number of the outcomes. Probability is the state of being probable and the extent to which something is likely to happen in the particular situations.
$P(A) = $ Total number of the favourable outcomes / Total number of the outcomes
Complete step by step solution:Total number of observations $ = 3{\rm{ red + 4 white + 5 blue balls}}$
$ = 12{\rm{ balls}}$
${}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
${}^{12}{C_2} = \dfrac{{12!}}{{2!(12 - 2)!}}$
$\begin{array}{l}
{}^{12}{C_2} = \dfrac{{12 \times 11 \times 10!}}{{2(10!)}}\\
{}^{12}{C_2} = 66
\end{array}$
Similarly,
$\begin{array}{l}
{}^3{C_2} = 3\\
{}^4{C_2} = 6\\
{}^5{C_2} = 10
\end{array}$
Favourable number of cases where balls are of different colours
$ = {}^{12}{C_2} - ({}^3{C_2} + {}^4{C_2} + {}^5{C_2})$
$\begin{array}{l}
= 66 - (3 + 6 + 10)\\
= 66 - 19\\
= 47
\end{array}$
The probability that balls are of the different colours,
$\begin{array}{l}
= \dfrac{{Favourable{\rm{ Cases}}}}{{Total{\rm{ number of cases}}}}\\
= \dfrac{{47}}{{66}}
\end{array}$
Therefore, the required solution- The probability that balls are of different colours is $ = \dfrac{{47}}{{66}}$
Hence, from the given multiple choices option A is the correct answer.
Note: Combinations are used if certain objects are to be arranged in such a way that the order of objects is not important whereas Permutation is an ordered combination- an act of arranging the objects or numbers in the specific order.
$P(A) = $ Total number of the favourable outcomes / Total number of the outcomes
Complete step by step solution:Total number of observations $ = 3{\rm{ red + 4 white + 5 blue balls}}$
$ = 12{\rm{ balls}}$
${}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
${}^{12}{C_2} = \dfrac{{12!}}{{2!(12 - 2)!}}$
$\begin{array}{l}
{}^{12}{C_2} = \dfrac{{12 \times 11 \times 10!}}{{2(10!)}}\\
{}^{12}{C_2} = 66
\end{array}$
Similarly,
$\begin{array}{l}
{}^3{C_2} = 3\\
{}^4{C_2} = 6\\
{}^5{C_2} = 10
\end{array}$
Favourable number of cases where balls are of different colours
$ = {}^{12}{C_2} - ({}^3{C_2} + {}^4{C_2} + {}^5{C_2})$
$\begin{array}{l}
= 66 - (3 + 6 + 10)\\
= 66 - 19\\
= 47
\end{array}$
The probability that balls are of the different colours,
$\begin{array}{l}
= \dfrac{{Favourable{\rm{ Cases}}}}{{Total{\rm{ number of cases}}}}\\
= \dfrac{{47}}{{66}}
\end{array}$
Therefore, the required solution- The probability that balls are of different colours is $ = \dfrac{{47}}{{66}}$
Hence, from the given multiple choices option A is the correct answer.
Note: Combinations are used if certain objects are to be arranged in such a way that the order of objects is not important whereas Permutation is an ordered combination- an act of arranging the objects or numbers in the specific order.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths