
A bag contains $3$ red, $4$ white and $5$ blue balls. If two balls are drawn at random, then the probability that they are of different colours, is
A. $\dfrac{{47}}{{66}}$
B. $\dfrac{{23}}{{33}}$
C. $\dfrac{{47}}{{132}}$
D. $\dfrac{{47}}{{33}}$
E. $\dfrac{{70}}{{33}}$
Answer
593.1k+ views
Hint: Probability of any given event is equal to the ratio of the favourable outcomes with the total number of the outcomes. Probability is the state of being probable and the extent to which something is likely to happen in the particular situations.
$P(A) = $ Total number of the favourable outcomes / Total number of the outcomes
Complete step by step solution:Total number of observations $ = 3{\rm{ red + 4 white + 5 blue balls}}$
$ = 12{\rm{ balls}}$
${}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
${}^{12}{C_2} = \dfrac{{12!}}{{2!(12 - 2)!}}$
$\begin{array}{l}
{}^{12}{C_2} = \dfrac{{12 \times 11 \times 10!}}{{2(10!)}}\\
{}^{12}{C_2} = 66
\end{array}$
Similarly,
$\begin{array}{l}
{}^3{C_2} = 3\\
{}^4{C_2} = 6\\
{}^5{C_2} = 10
\end{array}$
Favourable number of cases where balls are of different colours
$ = {}^{12}{C_2} - ({}^3{C_2} + {}^4{C_2} + {}^5{C_2})$
$\begin{array}{l}
= 66 - (3 + 6 + 10)\\
= 66 - 19\\
= 47
\end{array}$
The probability that balls are of the different colours,
$\begin{array}{l}
= \dfrac{{Favourable{\rm{ Cases}}}}{{Total{\rm{ number of cases}}}}\\
= \dfrac{{47}}{{66}}
\end{array}$
Therefore, the required solution- The probability that balls are of different colours is $ = \dfrac{{47}}{{66}}$
Hence, from the given multiple choices option A is the correct answer.
Note: Combinations are used if certain objects are to be arranged in such a way that the order of objects is not important whereas Permutation is an ordered combination- an act of arranging the objects or numbers in the specific order.
$P(A) = $ Total number of the favourable outcomes / Total number of the outcomes
Complete step by step solution:Total number of observations $ = 3{\rm{ red + 4 white + 5 blue balls}}$
$ = 12{\rm{ balls}}$
${}^n{C_r} = \dfrac{{n!}}{{r!(n - r)!}}$
${}^{12}{C_2} = \dfrac{{12!}}{{2!(12 - 2)!}}$
$\begin{array}{l}
{}^{12}{C_2} = \dfrac{{12 \times 11 \times 10!}}{{2(10!)}}\\
{}^{12}{C_2} = 66
\end{array}$
Similarly,
$\begin{array}{l}
{}^3{C_2} = 3\\
{}^4{C_2} = 6\\
{}^5{C_2} = 10
\end{array}$
Favourable number of cases where balls are of different colours
$ = {}^{12}{C_2} - ({}^3{C_2} + {}^4{C_2} + {}^5{C_2})$
$\begin{array}{l}
= 66 - (3 + 6 + 10)\\
= 66 - 19\\
= 47
\end{array}$
The probability that balls are of the different colours,
$\begin{array}{l}
= \dfrac{{Favourable{\rm{ Cases}}}}{{Total{\rm{ number of cases}}}}\\
= \dfrac{{47}}{{66}}
\end{array}$
Therefore, the required solution- The probability that balls are of different colours is $ = \dfrac{{47}}{{66}}$
Hence, from the given multiple choices option A is the correct answer.
Note: Combinations are used if certain objects are to be arranged in such a way that the order of objects is not important whereas Permutation is an ordered combination- an act of arranging the objects or numbers in the specific order.
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Explain zero factorial class 11 maths CBSE

What organs are located on the left side of your body class 11 biology CBSE

Draw a labelled diagram of the human heart and label class 11 biology CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

