
A bag containing 7 red, 5 black and 8 black balls. If four balls are drawn one by one with replacement, the probability that all are white$\dfrac{1}{{{{16}^x}}}$, what is the value of x?
Answer
595.8k+ views
Hint: Here we need to have knowledge about the probability concept and basic idea about the random selection process which will be helpful to solve the problem.
According to the data given,
In total we have 20 balls, which includes 7 red balls, 5black balls and 8 black balls.
Let us consider p is the probability of getting all white from 7 red balls, 5black balls and 8 black balls.
So here we have 20 balls in total and 5 white balls
Therefore we can say that the probability of getting all white balls from total number of balls is
$ \Rightarrow p = \dfrac{5}{{20}} = \dfrac{1}{4}$
And we also know that p is complement of q
So, p=q-1
$
\Rightarrow q = 1 - \dfrac{1}{4} \\
\Rightarrow q = \dfrac{3}{4} \\
$
Now let us consider X which denotes the random variable of the number of selecting white balls with the replacement out of 4 balls.
Therefore the probability of getting r white balls out of n is can be given as
$p({\rm X} = r){ = ^n}{C_r}{(p)^r}{(q)^{n - r}}$
As we know the p and q values let us substitute the value to get the probability of white balls
$ \Rightarrow p({\rm X} = r){ = ^n}{C_r}{\left( {\dfrac{1}{4}} \right)^r}{\left( {\dfrac{3}{4}} \right)^{n - r}}$
So here we have to find the probability of getting all white balls is
Therefore the probability of getting all white balls $ = p({\rm X} = 4){ = ^4}{C_4}{\left( {\dfrac{1}{4}} \right)^4}{\left( {\dfrac{3}{4}} \right)^{4 - 0}} = \dfrac{1}{{{4^4}}} = \dfrac{1}{{{{16}^2}}}$
Hence we they mentioned that If four balls are drawn one by one with replacement, the probability that all are white$\dfrac{1}{{{{16}^x}}}$
Now on comparing the given values with result, we say that x value is 2
Therefore x=2
NOTE: In this problem they have already mentioned the probability of getting all white balls is equal to some value to the power x. So here we have to find the x value. For this first we have to find the probability of all white balls within the total number of balls given later on using the probability values we have to find the probability of all balls in the random variable case to get the x value.
According to the data given,
In total we have 20 balls, which includes 7 red balls, 5black balls and 8 black balls.
Let us consider p is the probability of getting all white from 7 red balls, 5black balls and 8 black balls.
So here we have 20 balls in total and 5 white balls
Therefore we can say that the probability of getting all white balls from total number of balls is
$ \Rightarrow p = \dfrac{5}{{20}} = \dfrac{1}{4}$
And we also know that p is complement of q
So, p=q-1
$
\Rightarrow q = 1 - \dfrac{1}{4} \\
\Rightarrow q = \dfrac{3}{4} \\
$
Now let us consider X which denotes the random variable of the number of selecting white balls with the replacement out of 4 balls.
Therefore the probability of getting r white balls out of n is can be given as
$p({\rm X} = r){ = ^n}{C_r}{(p)^r}{(q)^{n - r}}$
As we know the p and q values let us substitute the value to get the probability of white balls
$ \Rightarrow p({\rm X} = r){ = ^n}{C_r}{\left( {\dfrac{1}{4}} \right)^r}{\left( {\dfrac{3}{4}} \right)^{n - r}}$
So here we have to find the probability of getting all white balls is
Therefore the probability of getting all white balls $ = p({\rm X} = 4){ = ^4}{C_4}{\left( {\dfrac{1}{4}} \right)^4}{\left( {\dfrac{3}{4}} \right)^{4 - 0}} = \dfrac{1}{{{4^4}}} = \dfrac{1}{{{{16}^2}}}$
Hence we they mentioned that If four balls are drawn one by one with replacement, the probability that all are white$\dfrac{1}{{{{16}^x}}}$
Now on comparing the given values with result, we say that x value is 2
Therefore x=2
NOTE: In this problem they have already mentioned the probability of getting all white balls is equal to some value to the power x. So here we have to find the x value. For this first we have to find the probability of all white balls within the total number of balls given later on using the probability values we have to find the probability of all balls in the random variable case to get the x value.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

