
A, B and C are three collinear points. The Coordinates of A and B are $\left( {3,4} \right)$ and $\left( {7,7} \right)$ respectively and $AC = 10$ Units. Find the sum of coordinates of C.
Answer
578.7k+ views
Hint: We use the midpoint formula to solve this problem and first find out the coordinates of C and their sum.
Formula Used:
Coordinates of the middle point G of two points $M\left( {x,y} \right)$ and $N\left( {a,b} \right)$ which lie of the same line is given by $G\left( {\dfrac{{x + a}}{2},\dfrac{{y + b}}{2}} \right)$.
Complete step-by-step answer:
A,B and C collinear points, as they lie on the same line.
Let the coordinate of point C be $\left( {x,y} \right)$
Distance formula between two points $\left( {{x_1},{y_1}} \right)$ and $\left( {{x_2},{y_2}} \right)$ , $d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $
Using the distance formula between two points $A\left( {3,4} \right)$ and $B\left( {7,7} \right)$
\[
{d_{AB}} = \sqrt {{{\left( {7 - 3} \right)}^2} + {{\left( {7 - 4} \right)}^2}} \\
{d_{AB}} = \sqrt {16 + 9} \\
{d_{AB}} = 5 \\
\]
The distance between the points A and B is 5 units. The distance between B and C is given by
$
{d_{BC}} = {d_{AC}} - {d_{AB}} \\
{d_{BC}} = 10 - 5 \\
{d_{BC}} = 5 \\
$
It means that B is the mid-point of A and C.
The coordinates of the mid-point G, lying between the two points $M\left( {x,y} \right)$ and $N\left( {a,b} \right)$ , is given by $G\left( {\dfrac{{x + a}}{2},\dfrac{{y + b}}{2}} \right)$.
Using it, find the coordinates of point B.
Coordinates of $A\left( {3,4} \right)$ and $C\left( {x,y} \right)$
$B\left( {\dfrac{{3 + x}}{2},\dfrac{{4 + y}}{2}} \right)$
But the coordinates of B is $\left( {7,7} \right)$ . Equate the X-Coordinate and Y-Coordinate of $B\left( {\dfrac{{3 + x}}{2},\dfrac{{4 + y}}{2}} \right)$ and $B\left( {7,7} \right)$ to calculate the coordinates of $C\left( {x,y} \right)$
$
\dfrac{{3 + x}}{2} = 7 \\
x = 11 \\
$
Also,
$
\dfrac{{4 + y}}{2} = 7 \\
y = 10 \\
$
The coordinates of point C is $\left( {11,10} \right)$ .
The sum of coordinates of point C,
$
S = 11 + 10 \\
S = 21 \\
$
Thus, the sum of the coordinates of point C is $S = 21$
Note: Collinear points are those points which lie on the same line. For A, B, and C to be collinear, the area of the triangle should be equal to 0.
Important concept and formulas to be remembered are
The distance between two points $\left( {{x_1},{y_1}} \right)$ and $\left( {{x_2},{y_2}} \right)$ , $d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $
The midpoint of two points, all lying on the same line is calculated as , $G\left( {\dfrac{{x + a}}{2},\dfrac{{y + b}}{2}} \right)$ where two points are $M\left( {x,y} \right)$ and $N\left( {a,b} \right)$.
Formula Used:
Coordinates of the middle point G of two points $M\left( {x,y} \right)$ and $N\left( {a,b} \right)$ which lie of the same line is given by $G\left( {\dfrac{{x + a}}{2},\dfrac{{y + b}}{2}} \right)$.
Complete step-by-step answer:
A,B and C collinear points, as they lie on the same line.
Let the coordinate of point C be $\left( {x,y} \right)$
Distance formula between two points $\left( {{x_1},{y_1}} \right)$ and $\left( {{x_2},{y_2}} \right)$ , $d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $
Using the distance formula between two points $A\left( {3,4} \right)$ and $B\left( {7,7} \right)$
\[
{d_{AB}} = \sqrt {{{\left( {7 - 3} \right)}^2} + {{\left( {7 - 4} \right)}^2}} \\
{d_{AB}} = \sqrt {16 + 9} \\
{d_{AB}} = 5 \\
\]
The distance between the points A and B is 5 units. The distance between B and C is given by
$
{d_{BC}} = {d_{AC}} - {d_{AB}} \\
{d_{BC}} = 10 - 5 \\
{d_{BC}} = 5 \\
$
It means that B is the mid-point of A and C.
The coordinates of the mid-point G, lying between the two points $M\left( {x,y} \right)$ and $N\left( {a,b} \right)$ , is given by $G\left( {\dfrac{{x + a}}{2},\dfrac{{y + b}}{2}} \right)$.
Using it, find the coordinates of point B.
Coordinates of $A\left( {3,4} \right)$ and $C\left( {x,y} \right)$
$B\left( {\dfrac{{3 + x}}{2},\dfrac{{4 + y}}{2}} \right)$
But the coordinates of B is $\left( {7,7} \right)$ . Equate the X-Coordinate and Y-Coordinate of $B\left( {\dfrac{{3 + x}}{2},\dfrac{{4 + y}}{2}} \right)$ and $B\left( {7,7} \right)$ to calculate the coordinates of $C\left( {x,y} \right)$
$
\dfrac{{3 + x}}{2} = 7 \\
x = 11 \\
$
Also,
$
\dfrac{{4 + y}}{2} = 7 \\
y = 10 \\
$
The coordinates of point C is $\left( {11,10} \right)$ .
The sum of coordinates of point C,
$
S = 11 + 10 \\
S = 21 \\
$
Thus, the sum of the coordinates of point C is $S = 21$
Note: Collinear points are those points which lie on the same line. For A, B, and C to be collinear, the area of the triangle should be equal to 0.
Important concept and formulas to be remembered are
The distance between two points $\left( {{x_1},{y_1}} \right)$ and $\left( {{x_2},{y_2}} \right)$ , $d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $
The midpoint of two points, all lying on the same line is calculated as , $G\left( {\dfrac{{x + a}}{2},\dfrac{{y + b}}{2}} \right)$ where two points are $M\left( {x,y} \right)$ and $N\left( {a,b} \right)$.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What are Quantum numbers Explain the quantum number class 11 chemistry CBSE

