A, B and C are three collinear points. The Coordinates of A and B are $\left( {3,4} \right)$ and $\left( {7,7} \right)$ respectively and $AC = 10$ Units. Find the sum of coordinates of C.
Answer
Verified
475.5k+ views
Hint: We use the midpoint formula to solve this problem and first find out the coordinates of C and their sum.
Formula Used:
Coordinates of the middle point G of two points $M\left( {x,y} \right)$ and $N\left( {a,b} \right)$ which lie of the same line is given by $G\left( {\dfrac{{x + a}}{2},\dfrac{{y + b}}{2}} \right)$.
Complete step-by-step answer:
A,B and C collinear points, as they lie on the same line.
Let the coordinate of point C be $\left( {x,y} \right)$
Distance formula between two points $\left( {{x_1},{y_1}} \right)$ and $\left( {{x_2},{y_2}} \right)$ , $d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $
Using the distance formula between two points $A\left( {3,4} \right)$ and $B\left( {7,7} \right)$
\[
{d_{AB}} = \sqrt {{{\left( {7 - 3} \right)}^2} + {{\left( {7 - 4} \right)}^2}} \\
{d_{AB}} = \sqrt {16 + 9} \\
{d_{AB}} = 5 \\
\]
The distance between the points A and B is 5 units. The distance between B and C is given by
$
{d_{BC}} = {d_{AC}} - {d_{AB}} \\
{d_{BC}} = 10 - 5 \\
{d_{BC}} = 5 \\
$
It means that B is the mid-point of A and C.
The coordinates of the mid-point G, lying between the two points $M\left( {x,y} \right)$ and $N\left( {a,b} \right)$ , is given by $G\left( {\dfrac{{x + a}}{2},\dfrac{{y + b}}{2}} \right)$.
Using it, find the coordinates of point B.
Coordinates of $A\left( {3,4} \right)$ and $C\left( {x,y} \right)$
$B\left( {\dfrac{{3 + x}}{2},\dfrac{{4 + y}}{2}} \right)$
But the coordinates of B is $\left( {7,7} \right)$ . Equate the X-Coordinate and Y-Coordinate of $B\left( {\dfrac{{3 + x}}{2},\dfrac{{4 + y}}{2}} \right)$ and $B\left( {7,7} \right)$ to calculate the coordinates of $C\left( {x,y} \right)$
$
\dfrac{{3 + x}}{2} = 7 \\
x = 11 \\
$
Also,
$
\dfrac{{4 + y}}{2} = 7 \\
y = 10 \\
$
The coordinates of point C is $\left( {11,10} \right)$ .
The sum of coordinates of point C,
$
S = 11 + 10 \\
S = 21 \\
$
Thus, the sum of the coordinates of point C is $S = 21$
Note: Collinear points are those points which lie on the same line. For A, B, and C to be collinear, the area of the triangle should be equal to 0.
Important concept and formulas to be remembered are
The distance between two points $\left( {{x_1},{y_1}} \right)$ and $\left( {{x_2},{y_2}} \right)$ , $d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $
The midpoint of two points, all lying on the same line is calculated as , $G\left( {\dfrac{{x + a}}{2},\dfrac{{y + b}}{2}} \right)$ where two points are $M\left( {x,y} \right)$ and $N\left( {a,b} \right)$.
Formula Used:
Coordinates of the middle point G of two points $M\left( {x,y} \right)$ and $N\left( {a,b} \right)$ which lie of the same line is given by $G\left( {\dfrac{{x + a}}{2},\dfrac{{y + b}}{2}} \right)$.
Complete step-by-step answer:
A,B and C collinear points, as they lie on the same line.
Let the coordinate of point C be $\left( {x,y} \right)$
Distance formula between two points $\left( {{x_1},{y_1}} \right)$ and $\left( {{x_2},{y_2}} \right)$ , $d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $
Using the distance formula between two points $A\left( {3,4} \right)$ and $B\left( {7,7} \right)$
\[
{d_{AB}} = \sqrt {{{\left( {7 - 3} \right)}^2} + {{\left( {7 - 4} \right)}^2}} \\
{d_{AB}} = \sqrt {16 + 9} \\
{d_{AB}} = 5 \\
\]
The distance between the points A and B is 5 units. The distance between B and C is given by
$
{d_{BC}} = {d_{AC}} - {d_{AB}} \\
{d_{BC}} = 10 - 5 \\
{d_{BC}} = 5 \\
$
It means that B is the mid-point of A and C.
The coordinates of the mid-point G, lying between the two points $M\left( {x,y} \right)$ and $N\left( {a,b} \right)$ , is given by $G\left( {\dfrac{{x + a}}{2},\dfrac{{y + b}}{2}} \right)$.
Using it, find the coordinates of point B.
Coordinates of $A\left( {3,4} \right)$ and $C\left( {x,y} \right)$
$B\left( {\dfrac{{3 + x}}{2},\dfrac{{4 + y}}{2}} \right)$
But the coordinates of B is $\left( {7,7} \right)$ . Equate the X-Coordinate and Y-Coordinate of $B\left( {\dfrac{{3 + x}}{2},\dfrac{{4 + y}}{2}} \right)$ and $B\left( {7,7} \right)$ to calculate the coordinates of $C\left( {x,y} \right)$
$
\dfrac{{3 + x}}{2} = 7 \\
x = 11 \\
$
Also,
$
\dfrac{{4 + y}}{2} = 7 \\
y = 10 \\
$
The coordinates of point C is $\left( {11,10} \right)$ .
The sum of coordinates of point C,
$
S = 11 + 10 \\
S = 21 \\
$
Thus, the sum of the coordinates of point C is $S = 21$
Note: Collinear points are those points which lie on the same line. For A, B, and C to be collinear, the area of the triangle should be equal to 0.
Important concept and formulas to be remembered are
The distance between two points $\left( {{x_1},{y_1}} \right)$ and $\left( {{x_2},{y_2}} \right)$ , $d = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} $
The midpoint of two points, all lying on the same line is calculated as , $G\left( {\dfrac{{x + a}}{2},\dfrac{{y + b}}{2}} \right)$ where two points are $M\left( {x,y} \right)$ and $N\left( {a,b} \right)$.
Recently Updated Pages
Master Class 11 English: Engaging Questions & Answers for Success
Master Class 11 Computer Science: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Economics: Engaging Questions & Answers for Success
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Trending doubts
10 examples of friction in our daily life
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE