
A and B are two events such that \[P\left( A \right) = 0.54\] , \[P\left( B \right) = 0.69\] and\[P\left( {A \cap B} \right) = 0.35\]. Find
$P\left( {A \cup B} \right)$
$P\left( {A' \cap B'} \right)$
$P\left( {A \cap B'} \right)$
$P\left( {B \cap A'} \right)$
Answer
605.1k+ views
Hint: Here $P\left( {A \cup B} \right)$ means $P\left( {A{\text{ or }}B} \right)$
$P\left( {A' \cap B'} \right)$ means $P\left( {{\text{neither }}A{\text{ nor }}B} \right)$
$P\left( {A \cap B'} \right)$ means $P\left( {A{\text{ but not }}B} \right)$
$P\left( {B \cap A'} \right)$ means $P\left( {B{\text{ but not }}A} \right)$.
Given that,
\[P\left( A \right) = 0.54\] , \[P\left( B \right) = 0.69\] and \[P\left( {A \cap B} \right) = 0.35\]
$
P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right) \\
{\text{ = }}0.54 + 0.69 - 0.35 \\
{\text{ = 0}}{\text{.88}} \\
\therefore P\left( {A \cup B} \right) = 0.88 \\
$
$
P\left( {A' \cap B'} \right) = 1 - \left( {P\left( {A \cup B} \right)} \right) \\
{\text{ = }}1 - \left( {0.88} \right) \\
{\text{ = }}0.12 \\
\therefore P\left( {A' \cap B'} \right) = 0.12 \\
$
Now consider$
P\left( {A \cap B} \right) = P\left( A \right) + P(B) - P\left( {A \cup B} \right) \\
{\text{ = }}0.54 + 0.69 - 0.88 \\
{\text{ = }}0.35 \\
\therefore P\left( {A \cap B} \right) = 0.35 \\
$
$
P\left( {A \cap B'} \right) = P\left( A \right) - P\left( {A \cap B} \right) \\
{\text{ = }}0.54 - 0.35 \\
{\text{ = }}0.19 \\
\therefore P\left( {A \cap B'} \right) = 0.19 \\
$
$
P\left( {B \cap A'} \right) = P\left( B \right) - P\left( {A \cap B} \right) \\
{\text{ = }}0.69 - 0.35 \\
{\text{ = }}0.34 \\
\therefore P\left( {B \cap A'} \right) = 0.34 \\
$
Thus,
$
P\left( {A \cup B} \right) = 0.88 \\
P\left( {A' \cap B'} \right) = 0.12 \\
P\left( {A \cap B'} \right) = 0.19 \\
P\left( {B \cap A'} \right) = 0.34 \\
$
Note: Probability of an event always lies between $0$and $1$ i.e. $0 \leqslant P\left( E \right) \leqslant 1$.
$P\left( {A' \cap B'} \right)$ means $P\left( {{\text{neither }}A{\text{ nor }}B} \right)$
$P\left( {A \cap B'} \right)$ means $P\left( {A{\text{ but not }}B} \right)$
$P\left( {B \cap A'} \right)$ means $P\left( {B{\text{ but not }}A} \right)$.
Given that,
\[P\left( A \right) = 0.54\] , \[P\left( B \right) = 0.69\] and \[P\left( {A \cap B} \right) = 0.35\]
$
P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {A \cap B} \right) \\
{\text{ = }}0.54 + 0.69 - 0.35 \\
{\text{ = 0}}{\text{.88}} \\
\therefore P\left( {A \cup B} \right) = 0.88 \\
$
$
P\left( {A' \cap B'} \right) = 1 - \left( {P\left( {A \cup B} \right)} \right) \\
{\text{ = }}1 - \left( {0.88} \right) \\
{\text{ = }}0.12 \\
\therefore P\left( {A' \cap B'} \right) = 0.12 \\
$
Now consider$
P\left( {A \cap B} \right) = P\left( A \right) + P(B) - P\left( {A \cup B} \right) \\
{\text{ = }}0.54 + 0.69 - 0.88 \\
{\text{ = }}0.35 \\
\therefore P\left( {A \cap B} \right) = 0.35 \\
$
$
P\left( {A \cap B'} \right) = P\left( A \right) - P\left( {A \cap B} \right) \\
{\text{ = }}0.54 - 0.35 \\
{\text{ = }}0.19 \\
\therefore P\left( {A \cap B'} \right) = 0.19 \\
$
$
P\left( {B \cap A'} \right) = P\left( B \right) - P\left( {A \cap B} \right) \\
{\text{ = }}0.69 - 0.35 \\
{\text{ = }}0.34 \\
\therefore P\left( {B \cap A'} \right) = 0.34 \\
$
Thus,
$
P\left( {A \cup B} \right) = 0.88 \\
P\left( {A' \cap B'} \right) = 0.12 \\
P\left( {A \cap B'} \right) = 0.19 \\
P\left( {B \cap A'} \right) = 0.34 \\
$
Note: Probability of an event always lies between $0$and $1$ i.e. $0 \leqslant P\left( E \right) \leqslant 1$.
Recently Updated Pages
Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

In which state Jews are not considered minors?

What is Ornithophobia?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

How many members did the Constituent Assembly of India class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

The Constitution of India was adopted on A 26 November class 10 social science CBSE

What is the full form of POSCO class 10 social science CBSE

