Answer
Verified
435k+ views
Hint The maximum tension in the string will be at the point when the maximum force is exerted on the stone that is tied at the end of the string. The tension will be a sum of the centrifugal force and the force due to gravitational acceleration.
Complete step by step answer
We’ve been given that a stone tied to the end of a string is being whirled in a vertical circle at a constant speed. The forces that will act on the stone will be due to the centrifugal force that will always be outwards away from the center of the string and the gravitational acceleration that is acting on the stone which is always downwards in nature.
Hence the tension in the string is
$\Rightarrow T = \dfrac{{m{v^2}}}{R} + mg\cos \theta $ where $R$ is the radius of the circle of the stone path, $v$ is its velocity, and $\theta $ is the angle of the line formed between the string and the vertical.
Substituting the value of $T = 52\,N$, $v = 4\,m/s$ and $R = 1\,m$, we get
$\Rightarrow 52 = \dfrac{{2{{(4)}^2}}}{1} + \left( {2 \times 10} \right)\cos \theta $
Subtracting both sides by 32, we get
$\Rightarrow 52 = 52\cos \theta $ which gives us
$\Rightarrow \cos \theta = 1$
$\therefore \theta = 0^\circ $
Hence the string will have a tension of 52 N when the stone is the lowest point in its circle which corresponds to option (B).
Note
We should be careful to give a direction to the gravitational acceleration since the tension will be in the direction of the string while the centrifugal force will always be directed outwards away from the centre of the circle and in the direction opposite to the tension and the gravitational force will always be downwards so we must take its component in the direction of the tension which depends on the angle formed by the string with the vertical.
Complete step by step answer
We’ve been given that a stone tied to the end of a string is being whirled in a vertical circle at a constant speed. The forces that will act on the stone will be due to the centrifugal force that will always be outwards away from the center of the string and the gravitational acceleration that is acting on the stone which is always downwards in nature.
Hence the tension in the string is
$\Rightarrow T = \dfrac{{m{v^2}}}{R} + mg\cos \theta $ where $R$ is the radius of the circle of the stone path, $v$ is its velocity, and $\theta $ is the angle of the line formed between the string and the vertical.
Substituting the value of $T = 52\,N$, $v = 4\,m/s$ and $R = 1\,m$, we get
$\Rightarrow 52 = \dfrac{{2{{(4)}^2}}}{1} + \left( {2 \times 10} \right)\cos \theta $
Subtracting both sides by 32, we get
$\Rightarrow 52 = 52\cos \theta $ which gives us
$\Rightarrow \cos \theta = 1$
$\therefore \theta = 0^\circ $
Hence the string will have a tension of 52 N when the stone is the lowest point in its circle which corresponds to option (B).
Note
We should be careful to give a direction to the gravitational acceleration since the tension will be in the direction of the string while the centrifugal force will always be directed outwards away from the centre of the circle and in the direction opposite to the tension and the gravitational force will always be downwards so we must take its component in the direction of the tension which depends on the angle formed by the string with the vertical.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Who was the Governor general of India at the time of class 11 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference Between Plant Cell and Animal Cell