
A $0.66\,kg$ ball is moving with a speed of $100\,m.{s^{ - 1}}$ . The associated wavelength will be: $(h = 6.6 \times {10^{ - 34}}\,Js)$ .
A. $6.6 \times {10^{ - 32}}\,m$
B. $6.6 \times {10^{ - 34}}\,m$
C. $1 \times {10^{ - 35}}\,m$
D. $1 \times {10^{ - 32}}\,m$
Answer
501.3k+ views
Hint:In order to this question, to find the associated wavelength of the movement of ball, we will use de-Broglie’s equation $(\lambda = \dfrac{h}{{mv}})$ that shows the relation between all the mentioned terms in the question, and then we will also discuss about the de-Broglie’s equation.
Complete step by step answer:
The de Broglie equation is one of the equations that is commonly used to define the wave properties of matter. It basically describes the wave nature of the electron. Electromagnetic radiation has the properties of both a particle (with momentum) and a wave (expressed in frequency, wavelength). This dual nature trait was also discovered in microscopic particle-like electrons.
Given that, Mass of the ball, $m = 0.66\,kg$ ,
Velocity of the ball, $v = 100\,m.{s^{ - 1}}$
$h = \text{planck's constant} = 6.6 \times {10^{ - 34}}\,Js$
Now, to find the wavelength, we will use de-Broglie equation that shows the relation between wavelength, mass and the velocity:-
$\lambda = \dfrac{h}{{m.v}}$
where, $\lambda $ is the wavelength, $m$ is the mass of the ball and $v$ is the velocity of the ball.
$\lambda = \dfrac{{6.6 \times {{10}^{ - 34}}}}{{0.66 \times 100}} \\
\therefore \lambda = 1 \times {10^{ - 35}}\,m \\ $
Hence, the correct option is C.
Note: Every moving particle, according to de Broglie, functions as a wave at times and as a particle at other times. The matter-wave or de Broglie wave, whose wavelength is called the de Broglie wavelength, is related to moving particles.
Complete step by step answer:
The de Broglie equation is one of the equations that is commonly used to define the wave properties of matter. It basically describes the wave nature of the electron. Electromagnetic radiation has the properties of both a particle (with momentum) and a wave (expressed in frequency, wavelength). This dual nature trait was also discovered in microscopic particle-like electrons.
Given that, Mass of the ball, $m = 0.66\,kg$ ,
Velocity of the ball, $v = 100\,m.{s^{ - 1}}$
$h = \text{planck's constant} = 6.6 \times {10^{ - 34}}\,Js$
Now, to find the wavelength, we will use de-Broglie equation that shows the relation between wavelength, mass and the velocity:-
$\lambda = \dfrac{h}{{m.v}}$
where, $\lambda $ is the wavelength, $m$ is the mass of the ball and $v$ is the velocity of the ball.
$\lambda = \dfrac{{6.6 \times {{10}^{ - 34}}}}{{0.66 \times 100}} \\
\therefore \lambda = 1 \times {10^{ - 35}}\,m \\ $
Hence, the correct option is C.
Note: Every moving particle, according to de Broglie, functions as a wave at times and as a particle at other times. The matter-wave or de Broglie wave, whose wavelength is called the de Broglie wavelength, is related to moving particles.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

