When 58 grams of water is heated from 275K to 365K, the water
A. Absorbs 21,820J
B. Absorbs 377J
C. Releases 5,220J
D. Absorbs 242J
E. Releases 90J
Answer
Verified
459.6k+ views
Hint: Water has high heat capacity, i.e. it has a high ability to absorb heat to change its state. This phenomenon is due to the presence of hydrogen bonds and these bonds are cohesive and need more heat to break.
Complete step by step solution:
When water is heated then it absorbs and the energy absorbed by 58 g water on heating from 275 K to 365K is calculated by the given formula:
$q = ms\Delta T$.......... (1)
Where q is the amount of heat absorbed by water, m is the mass of water, s is the specific heat of water and $\Delta T$ is the temperature change.
Given that the mass of water is 50g.And we know the specific heat of water is 4.179 J/g℃ and the temperature change is calculated as:
$\Delta T = 365 - 275 = 90K$
Now put the value in equation (1), we get:
$q = 58 \times 4.179 \times 90 = 21820J$
So, the correct answer is Option A.
Additional Information:
Bond energy links to Bond Order and Bond length. Higher the bond order, shorter is the bond length and shorter the bond length, greater is the bond energy. Based on whether the energy is released or absorbed, reactions can be termed as Exothermic or Endothermic. Also, the enthalpy change is positive when bonds are broken and it is negative when bonds are formed.
Note: The energy required to break the one mole of a bond is known as bond energy. It is also known as bond enthalpy. Bond energy is the measure of the bond strength in a chemical bond. The unit of bond energy is KJ/mol.
Complete step by step solution:
When water is heated then it absorbs and the energy absorbed by 58 g water on heating from 275 K to 365K is calculated by the given formula:
$q = ms\Delta T$.......... (1)
Where q is the amount of heat absorbed by water, m is the mass of water, s is the specific heat of water and $\Delta T$ is the temperature change.
Given that the mass of water is 50g.And we know the specific heat of water is 4.179 J/g℃ and the temperature change is calculated as:
$\Delta T = 365 - 275 = 90K$
Now put the value in equation (1), we get:
$q = 58 \times 4.179 \times 90 = 21820J$
So, the correct answer is Option A.
Additional Information:
Bond energy links to Bond Order and Bond length. Higher the bond order, shorter is the bond length and shorter the bond length, greater is the bond energy. Based on whether the energy is released or absorbed, reactions can be termed as Exothermic or Endothermic. Also, the enthalpy change is positive when bonds are broken and it is negative when bonds are formed.
Note: The energy required to break the one mole of a bond is known as bond energy. It is also known as bond enthalpy. Bond energy is the measure of the bond strength in a chemical bond. The unit of bond energy is KJ/mol.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE