Answer
Verified
426.3k+ views
Hint: Water has high heat capacity, i.e. it has a high ability to absorb heat to change its state. This phenomenon is due to the presence of hydrogen bonds and these bonds are cohesive and need more heat to break.
Complete step by step solution:
When water is heated then it absorbs and the energy absorbed by 58 g water on heating from 275 K to 365K is calculated by the given formula:
$q = ms\Delta T$.......... (1)
Where q is the amount of heat absorbed by water, m is the mass of water, s is the specific heat of water and $\Delta T$ is the temperature change.
Given that the mass of water is 50g.And we know the specific heat of water is 4.179 J/g℃ and the temperature change is calculated as:
$\Delta T = 365 - 275 = 90K$
Now put the value in equation (1), we get:
$q = 58 \times 4.179 \times 90 = 21820J$
So, the correct answer is Option A.
Additional Information:
Bond energy links to Bond Order and Bond length. Higher the bond order, shorter is the bond length and shorter the bond length, greater is the bond energy. Based on whether the energy is released or absorbed, reactions can be termed as Exothermic or Endothermic. Also, the enthalpy change is positive when bonds are broken and it is negative when bonds are formed.
Note: The energy required to break the one mole of a bond is known as bond energy. It is also known as bond enthalpy. Bond energy is the measure of the bond strength in a chemical bond. The unit of bond energy is KJ/mol.
Complete step by step solution:
When water is heated then it absorbs and the energy absorbed by 58 g water on heating from 275 K to 365K is calculated by the given formula:
$q = ms\Delta T$.......... (1)
Where q is the amount of heat absorbed by water, m is the mass of water, s is the specific heat of water and $\Delta T$ is the temperature change.
Given that the mass of water is 50g.And we know the specific heat of water is 4.179 J/g℃ and the temperature change is calculated as:
$\Delta T = 365 - 275 = 90K$
Now put the value in equation (1), we get:
$q = 58 \times 4.179 \times 90 = 21820J$
So, the correct answer is Option A.
Additional Information:
Bond energy links to Bond Order and Bond length. Higher the bond order, shorter is the bond length and shorter the bond length, greater is the bond energy. Based on whether the energy is released or absorbed, reactions can be termed as Exothermic or Endothermic. Also, the enthalpy change is positive when bonds are broken and it is negative when bonds are formed.
Note: The energy required to break the one mole of a bond is known as bond energy. It is also known as bond enthalpy. Bond energy is the measure of the bond strength in a chemical bond. The unit of bond energy is KJ/mol.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
At which age domestication of animals started A Neolithic class 11 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE