
$4 \cdot {2^{2x}} - {6^x} = 18 \cdot {3^{2x}}$
Answer
611.4k+ views
Hint: - Use ${6^x} = {2^x} \cdot {3^x}$
Given equation is
$4 \cdot {2^{2x}} - {6^x} = 18 \cdot {3^{2x}}$
Substitute, ${6^x} = {\left( {2 \cdot 3} \right)^x} = {2^x} \cdot {3^x}$in the above equation
$
4 \cdot {2^{2x}} - {6^x} = 18 \cdot {3^{2x}} \\
4 \cdot {\left( {{2^x}} \right)^2} - {2^x} \cdot {3^x} = 18.{\left( {{3^x}} \right)^2} \\
4 \cdot {\left( {{2^x}} \right)^2} - {2^x} \cdot {3^x} - 18.{\left( {{3^x}} \right)^2} = 0 \\
$
Now factorize the above equation
$
4 \cdot {\left( {{2^x}} \right)^2} - {2^x} \cdot {3^x} - 18.{\left( {{3^x}} \right)^2} = 0 \\
4 \cdot {\left( {{2^x}} \right)^2} + 8 \cdot {2^x} \cdot {3^x} - 9 \cdot {2^x} \cdot {3^x} - 18.{\left( {{3^x}} \right)^2} = 0 \\
4 \cdot {2^x}\left( {{2^x} + 2 \cdot {3^x}} \right) - 9 \cdot {3^x}\left( {{2^x} + 2 \cdot {3^x}} \right) = 0 \\
\left( {{2^x} + 2 \cdot {3^x}} \right)\left( {4 \cdot {2^x} - 9 \cdot {3^x}} \right) = 0 \\
\therefore \left( {{2^x} + 2 \cdot {3^x}} \right) = 0,{\text{ }}\left( {4 \cdot {2^x} - 9 \cdot {3^x}} \right) = 0 \\
$
From here, $\left( {{2^x} + 2 \cdot {3^x}} \right) = 0$ cannot be possible for any finite value of $x$.
Therefore $\left( {4 \cdot {2^x} - 9 \cdot {3^x}} \right) = 0$
$
\therefore 4 \cdot {2^x} = 9 \cdot {3^x} \\
{\left( {\dfrac{2}{3}} \right)^x} = \dfrac{9}{4} = {\left( {\dfrac{3}{2}} \right)^2} = {\left( {\dfrac{2}{3}} \right)^{ - 2}} \\
$
So on comparing the value of $x = - 2$.
So, the required solution of the given equation is $x = - 2$
Note: - Whenever we face such types of questions first convert the equation into simplified form then factorize the equation then put all the factors equal to zero and calculate the value of $x$, which is the required solution of the given equation.
Given equation is
$4 \cdot {2^{2x}} - {6^x} = 18 \cdot {3^{2x}}$
Substitute, ${6^x} = {\left( {2 \cdot 3} \right)^x} = {2^x} \cdot {3^x}$in the above equation
$
4 \cdot {2^{2x}} - {6^x} = 18 \cdot {3^{2x}} \\
4 \cdot {\left( {{2^x}} \right)^2} - {2^x} \cdot {3^x} = 18.{\left( {{3^x}} \right)^2} \\
4 \cdot {\left( {{2^x}} \right)^2} - {2^x} \cdot {3^x} - 18.{\left( {{3^x}} \right)^2} = 0 \\
$
Now factorize the above equation
$
4 \cdot {\left( {{2^x}} \right)^2} - {2^x} \cdot {3^x} - 18.{\left( {{3^x}} \right)^2} = 0 \\
4 \cdot {\left( {{2^x}} \right)^2} + 8 \cdot {2^x} \cdot {3^x} - 9 \cdot {2^x} \cdot {3^x} - 18.{\left( {{3^x}} \right)^2} = 0 \\
4 \cdot {2^x}\left( {{2^x} + 2 \cdot {3^x}} \right) - 9 \cdot {3^x}\left( {{2^x} + 2 \cdot {3^x}} \right) = 0 \\
\left( {{2^x} + 2 \cdot {3^x}} \right)\left( {4 \cdot {2^x} - 9 \cdot {3^x}} \right) = 0 \\
\therefore \left( {{2^x} + 2 \cdot {3^x}} \right) = 0,{\text{ }}\left( {4 \cdot {2^x} - 9 \cdot {3^x}} \right) = 0 \\
$
From here, $\left( {{2^x} + 2 \cdot {3^x}} \right) = 0$ cannot be possible for any finite value of $x$.
Therefore $\left( {4 \cdot {2^x} - 9 \cdot {3^x}} \right) = 0$
$
\therefore 4 \cdot {2^x} = 9 \cdot {3^x} \\
{\left( {\dfrac{2}{3}} \right)^x} = \dfrac{9}{4} = {\left( {\dfrac{3}{2}} \right)^2} = {\left( {\dfrac{2}{3}} \right)^{ - 2}} \\
$
So on comparing the value of $x = - 2$.
So, the required solution of the given equation is $x = - 2$
Note: - Whenever we face such types of questions first convert the equation into simplified form then factorize the equation then put all the factors equal to zero and calculate the value of $x$, which is the required solution of the given equation.
Recently Updated Pages
Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Social Science: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Class 11 Question and Answer - Your Ultimate Solutions Guide

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Trending doubts
10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is a periderm How does periderm formation take class 11 biology CBSE

