$4 \cdot {2^{2x}} - {6^x} = 18 \cdot {3^{2x}}$
Answer
Verified
509.1k+ views
Hint: - Use ${6^x} = {2^x} \cdot {3^x}$
Given equation is
$4 \cdot {2^{2x}} - {6^x} = 18 \cdot {3^{2x}}$
Substitute, ${6^x} = {\left( {2 \cdot 3} \right)^x} = {2^x} \cdot {3^x}$in the above equation
$
4 \cdot {2^{2x}} - {6^x} = 18 \cdot {3^{2x}} \\
4 \cdot {\left( {{2^x}} \right)^2} - {2^x} \cdot {3^x} = 18.{\left( {{3^x}} \right)^2} \\
4 \cdot {\left( {{2^x}} \right)^2} - {2^x} \cdot {3^x} - 18.{\left( {{3^x}} \right)^2} = 0 \\
$
Now factorize the above equation
$
4 \cdot {\left( {{2^x}} \right)^2} - {2^x} \cdot {3^x} - 18.{\left( {{3^x}} \right)^2} = 0 \\
4 \cdot {\left( {{2^x}} \right)^2} + 8 \cdot {2^x} \cdot {3^x} - 9 \cdot {2^x} \cdot {3^x} - 18.{\left( {{3^x}} \right)^2} = 0 \\
4 \cdot {2^x}\left( {{2^x} + 2 \cdot {3^x}} \right) - 9 \cdot {3^x}\left( {{2^x} + 2 \cdot {3^x}} \right) = 0 \\
\left( {{2^x} + 2 \cdot {3^x}} \right)\left( {4 \cdot {2^x} - 9 \cdot {3^x}} \right) = 0 \\
\therefore \left( {{2^x} + 2 \cdot {3^x}} \right) = 0,{\text{ }}\left( {4 \cdot {2^x} - 9 \cdot {3^x}} \right) = 0 \\
$
From here, $\left( {{2^x} + 2 \cdot {3^x}} \right) = 0$ cannot be possible for any finite value of $x$.
Therefore $\left( {4 \cdot {2^x} - 9 \cdot {3^x}} \right) = 0$
$
\therefore 4 \cdot {2^x} = 9 \cdot {3^x} \\
{\left( {\dfrac{2}{3}} \right)^x} = \dfrac{9}{4} = {\left( {\dfrac{3}{2}} \right)^2} = {\left( {\dfrac{2}{3}} \right)^{ - 2}} \\
$
So on comparing the value of $x = - 2$.
So, the required solution of the given equation is $x = - 2$
Note: - Whenever we face such types of questions first convert the equation into simplified form then factorize the equation then put all the factors equal to zero and calculate the value of $x$, which is the required solution of the given equation.
Given equation is
$4 \cdot {2^{2x}} - {6^x} = 18 \cdot {3^{2x}}$
Substitute, ${6^x} = {\left( {2 \cdot 3} \right)^x} = {2^x} \cdot {3^x}$in the above equation
$
4 \cdot {2^{2x}} - {6^x} = 18 \cdot {3^{2x}} \\
4 \cdot {\left( {{2^x}} \right)^2} - {2^x} \cdot {3^x} = 18.{\left( {{3^x}} \right)^2} \\
4 \cdot {\left( {{2^x}} \right)^2} - {2^x} \cdot {3^x} - 18.{\left( {{3^x}} \right)^2} = 0 \\
$
Now factorize the above equation
$
4 \cdot {\left( {{2^x}} \right)^2} - {2^x} \cdot {3^x} - 18.{\left( {{3^x}} \right)^2} = 0 \\
4 \cdot {\left( {{2^x}} \right)^2} + 8 \cdot {2^x} \cdot {3^x} - 9 \cdot {2^x} \cdot {3^x} - 18.{\left( {{3^x}} \right)^2} = 0 \\
4 \cdot {2^x}\left( {{2^x} + 2 \cdot {3^x}} \right) - 9 \cdot {3^x}\left( {{2^x} + 2 \cdot {3^x}} \right) = 0 \\
\left( {{2^x} + 2 \cdot {3^x}} \right)\left( {4 \cdot {2^x} - 9 \cdot {3^x}} \right) = 0 \\
\therefore \left( {{2^x} + 2 \cdot {3^x}} \right) = 0,{\text{ }}\left( {4 \cdot {2^x} - 9 \cdot {3^x}} \right) = 0 \\
$
From here, $\left( {{2^x} + 2 \cdot {3^x}} \right) = 0$ cannot be possible for any finite value of $x$.
Therefore $\left( {4 \cdot {2^x} - 9 \cdot {3^x}} \right) = 0$
$
\therefore 4 \cdot {2^x} = 9 \cdot {3^x} \\
{\left( {\dfrac{2}{3}} \right)^x} = \dfrac{9}{4} = {\left( {\dfrac{3}{2}} \right)^2} = {\left( {\dfrac{2}{3}} \right)^{ - 2}} \\
$
So on comparing the value of $x = - 2$.
So, the required solution of the given equation is $x = - 2$
Note: - Whenever we face such types of questions first convert the equation into simplified form then factorize the equation then put all the factors equal to zero and calculate the value of $x$, which is the required solution of the given equation.
Recently Updated Pages
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Physics: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Master Class 11 English: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
What organs are located on the left side of your body class 11 biology CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Petromyzon belongs to class A Osteichthyes B Chondrichthyes class 11 biology CBSE
Comparative account of the alimentary canal and digestive class 11 biology CBSE