Answer
Verified
456.3k+ views
Hint: In titration, mass equivalent of one substance becomes equal to the mass equivalent of another substance. Titration is used to find the unknown concentration of substance by treating it with substance of known strength and molarity.
Complete step by step answer: As we know that titration is a common laboratory method of quantitative chemical analysis to determine the concentration of an analyte.
Now according to the question, a mixture of $KOCl$ and $CaOC{l_2}$when titrated, they give the chloride salt. The redox reactions are written below. The formation of $C{l^ - }$ from $KOCl$ is written as
$Cl\;{O^ - } + 2{e^ - }\; \to \;C{l^ - }$
$\left( {x = + 1} \right)\left( {x = - 1} \right)$
Here x represents the oxidation state of $Cl$ on both reactant and product side. The oxidation changes from $ + 1$ to $ - 1$ , so the change in oxidation state (n) is $\left| { + 1( - \left( { - 1} \right)} \right| = 2,$
The formation of $C{l^ - }$ from $CaOC{l_2}$ is written as
$C{l_2}{O^{2 - }}\;\;\;\; + \;2{e^ - }\;\; \to \;\;\;C{l^ - }$
$\left( {x = 0} \right)\left( {x = - 1} \right)$
The change in oxidation state is (n) is $1$ .
Now conversion of $C{r_2}{O_4}^{2 - }$ takes place as
$C{r_2}{O_4}^{2 - } \to \;\;2C{O_2} + \;2{e^ - }$
$\left[ {x = 3} \right]\;\;\left[ {x = 4} \right]$
Here change in oxidation state is $ = 2$
Now let a and b millimoles of $CaOC{l_2}$ are present in the mixture respectively.
Hence, according to question
Mass equivalence of $KOCl$ $ + $ Mass Equivalence of $CaOC{l_2}$= Mass Equivalence of ${K_2}C{r_2}{O_4}$
$\Rightarrow$ $2a + 2b = 100 \times 0.15 \times 2$
$\Rightarrow$ $2a + 2b\; = \;30\;\;\;\; - - - \left( 1 \right)$
[We have multiplied a and ${K_2}C{r_2}{O_4}$ because their change in oxidation state is $2$ and with b because there are $2\;C{l^ - }$ atoms present in its compound which changes its oxidation state]
Also,
Millimoles of $C{l^ - }$ from $KOCl$ $ + $ Millimoles of $C{l^ - }$ from $CaOC{l_2}$ = Millimoles of $AgCl$
$1 \times a$ [ because only on $C{l^ - }$ present ] $ + 2 \times b$ [ because two $C{l^ - }$ present ]$ = \dfrac{{Given{\text{ mass of AgCl}}}}{{Molar{\text{ mass of AgCl}}}} \times {10^3}$
$\Rightarrow$ $a + 2b\; = \;\dfrac{{2.87}}{{143.5}} \times {10^3}$
$\Rightarrow$ $a + 2b\; = 20\;\; - - \left( 2 \right)$
[because mass of $AgCl$ given is $2.87g$ & Molar Mass of $AgCl = 143.5g$ ]
On Comparing and Equating $\left( 1 \right)$ & $\left( 2 \right)$, we got $a = 10$ and $b = 5$
Now total weight of given sample is $3g.$
Millimoles of $KOCl\, = 10$
Millimoles of $CaOC{l_2} = 5$
$\therefore \;\% $ of $KOCl\; = $ $\dfrac{{\operatorname{No} .\;\operatorname{moles} \,of\;KOCl}}{{\operatorname{No} .\;mole\;of\;KOCl\;\operatorname{given} }} \times 100\;\; - - - - \left( 3 \right)$
$\Rightarrow$ $\dfrac{{10 \times {{10}^{ - 3}}}}{3} \times 90.5 \times 100 = 30.1\% $
[Because molecular weight is $90.5g$ ]
$\therefore \% \;$ of $CaOC{l_2}$ = $\dfrac{{5 \times {{10}^{ - 3}}12}}{3} \times 100 = 21.2\% $
[using Equation $3$ and we know Mol. wt. of $CaOC{l_2}$ is $127$ ]
Note: In this question, we have used the concept of oxidation state also. Oxidation state is defined as the valency or power shown by an element when bonded with other atoms. Oxidation state can be calculated by comparing variances of bonded atoms.
Complete step by step answer: As we know that titration is a common laboratory method of quantitative chemical analysis to determine the concentration of an analyte.
Now according to the question, a mixture of $KOCl$ and $CaOC{l_2}$when titrated, they give the chloride salt. The redox reactions are written below. The formation of $C{l^ - }$ from $KOCl$ is written as
$Cl\;{O^ - } + 2{e^ - }\; \to \;C{l^ - }$
$\left( {x = + 1} \right)\left( {x = - 1} \right)$
Here x represents the oxidation state of $Cl$ on both reactant and product side. The oxidation changes from $ + 1$ to $ - 1$ , so the change in oxidation state (n) is $\left| { + 1( - \left( { - 1} \right)} \right| = 2,$
The formation of $C{l^ - }$ from $CaOC{l_2}$ is written as
$C{l_2}{O^{2 - }}\;\;\;\; + \;2{e^ - }\;\; \to \;\;\;C{l^ - }$
$\left( {x = 0} \right)\left( {x = - 1} \right)$
The change in oxidation state is (n) is $1$ .
Now conversion of $C{r_2}{O_4}^{2 - }$ takes place as
$C{r_2}{O_4}^{2 - } \to \;\;2C{O_2} + \;2{e^ - }$
$\left[ {x = 3} \right]\;\;\left[ {x = 4} \right]$
Here change in oxidation state is $ = 2$
Now let a and b millimoles of $CaOC{l_2}$ are present in the mixture respectively.
Hence, according to question
Mass equivalence of $KOCl$ $ + $ Mass Equivalence of $CaOC{l_2}$= Mass Equivalence of ${K_2}C{r_2}{O_4}$
$\Rightarrow$ $2a + 2b = 100 \times 0.15 \times 2$
$\Rightarrow$ $2a + 2b\; = \;30\;\;\;\; - - - \left( 1 \right)$
[We have multiplied a and ${K_2}C{r_2}{O_4}$ because their change in oxidation state is $2$ and with b because there are $2\;C{l^ - }$ atoms present in its compound which changes its oxidation state]
Also,
Millimoles of $C{l^ - }$ from $KOCl$ $ + $ Millimoles of $C{l^ - }$ from $CaOC{l_2}$ = Millimoles of $AgCl$
$1 \times a$ [ because only on $C{l^ - }$ present ] $ + 2 \times b$ [ because two $C{l^ - }$ present ]$ = \dfrac{{Given{\text{ mass of AgCl}}}}{{Molar{\text{ mass of AgCl}}}} \times {10^3}$
$\Rightarrow$ $a + 2b\; = \;\dfrac{{2.87}}{{143.5}} \times {10^3}$
$\Rightarrow$ $a + 2b\; = 20\;\; - - \left( 2 \right)$
[because mass of $AgCl$ given is $2.87g$ & Molar Mass of $AgCl = 143.5g$ ]
On Comparing and Equating $\left( 1 \right)$ & $\left( 2 \right)$, we got $a = 10$ and $b = 5$
Now total weight of given sample is $3g.$
Millimoles of $KOCl\, = 10$
Millimoles of $CaOC{l_2} = 5$
$\therefore \;\% $ of $KOCl\; = $ $\dfrac{{\operatorname{No} .\;\operatorname{moles} \,of\;KOCl}}{{\operatorname{No} .\;mole\;of\;KOCl\;\operatorname{given} }} \times 100\;\; - - - - \left( 3 \right)$
$\Rightarrow$ $\dfrac{{10 \times {{10}^{ - 3}}}}{3} \times 90.5 \times 100 = 30.1\% $
[Because molecular weight is $90.5g$ ]
$\therefore \% \;$ of $CaOC{l_2}$ = $\dfrac{{5 \times {{10}^{ - 3}}12}}{3} \times 100 = 21.2\% $
[using Equation $3$ and we know Mol. wt. of $CaOC{l_2}$ is $127$ ]
Note: In this question, we have used the concept of oxidation state also. Oxidation state is defined as the valency or power shown by an element when bonded with other atoms. Oxidation state can be calculated by comparing variances of bonded atoms.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it