Answer
Verified
426.3k+ views
Hint: We will determine the number of mole of solute (hydrochloric acid) by using the mole formula. Then the amount of solvent (water) in kg and then molarity of the solution. Then by comparing the molarity and volume product we can determine the volume of the stock solution.
Complete Step by step answer: $29.2$% (w/w) ${\text{HCl}}$ stock means that $29.2$ gram of hydrochloric acid is present in $100$ gram of solution.
Determine the number of mole of hydrochloric acid as follows:
${\text{Mole}}\,{\text{ = }}\,\dfrac{{{\text{Mass}}}}{{{\text{Molar}}\,{\text{mass}}}}$
Substitute ${\text{36}}{\text{.5}}\,{\text{g}}\,{\text{mo}}{{\text{l}}^{ - 1}}$ for molar mass and $29.2$ gram for mass.
${\text{Mole}}\,{\text{ = }}\,\dfrac{{29.2\,\,{\text{g}}}}{{{\text{36}}{\text{.5}}\,{\text{g}}\,{\text{mo}}{{\text{l}}^{ - 1}}}}$
${\text{Mole}}\,{\text{ = }}\,0.8\,{\text{mol}}$
So, the mole of hydrochloric acid is$0.8$.
Use the density formula to determine the volume of the solution as follows
${\text{density}}\,{\text{ = }}\,\dfrac{{{\text{mass}}}}{{{\text{volume}}}}$
Substitute ${\text{1}}{\text{.25}}\,{\text{g}}\,{\text{m}}{{\text{l}}^{ - 1}}$for density and $100$ gram for mass of the solution.
${\text{1}}{\text{.25}}\,{\text{g}}\,{\text{m}}{{\text{l}}^{ - 1}}\,{\text{ = }}\,\dfrac{{{\text{100}}\,{\text{g}}}}{{{\text{volume}}}}$
${\text{volume = }}\,\dfrac{{{\text{100}}\,{\text{g}}}}{{{\text{1}}{\text{.25}}\,{\text{g}}\,{\text{m}}{{\text{l}}^{ - 1}}}}$
$\Rightarrow {\text{volume = }}\,80\,{\text{ml}}$
Convert the volume of solution from ml to L as follows:
$1000\,{\text{ml}}\,{\text{ = }}\,{\text{1}}\,{\text{L}}$
$\Rightarrow 80\,{\text{ml}}\,{\text{ = }}\,0.08\,{\text{L}}$
The formula of molarity is as follows:
${\text{Molarity}}\,{\text{ = }}\,\dfrac{{{\text{Moles}}\,{\text{of}}\,{\text{solute}}}}{{{\text{L of solution}}}}$
Substitute $0.8$ for moles of solute and $0.08$ ml for volume of solution.
${\text{Molarity}}\,{\text{ = }}\,\dfrac{{0.8\,{\text{mol}}}}{{0.08\,{\text{L}}}}$
$\Rightarrow {\text{Molarity}}\,{\text{ = }}\,{\text{10}}\,{\text{M}}$
So, the molarity of the stock solution is $10\,{\text{M}}$.
Now we will determine the volume of $10\,{\text{M}}$${\text{HCl}}$ stock solution required to prepare the $200$ml of$0.4\,{\text{M}}$${\text{HCl}}$ as follows:
${{\text{M}}_{\text{1}}}{{\text{V}}_{\text{1}}}\,{\text{ = }}\,{{\text{M}}_{\text{2}}}{{\text{V}}_{\text{2}}}$
Where,
${{\text{M}}_{\text{1}}}$ is the molarity of the solution having
$ {{\text{V}}_{\text{1}}}$ volume.
${{\text{M}}_{\text{2}}}$ is the molarity of the solution having ${{\text{V}}_{\text{2}}}$ volume.
Substitute $10\,{\text{M}}$for${{\text{M}}_{\text{1}}}$, $200$ml for ${{\text{V}}_{\text{2}}}$and $0.4\,{\text{M}}$ for ${{\text{M}}_{\text{2}}}$.
$\Rightarrow 10\,{\text{M}}\,\, \times \,\,{{\text{V}}_1}\,{\text{ = }}\,0.4\,{\text{M}}\,\, \times \,\,{\text{200}}\,{\text{ml}}$
$\Rightarrow {{\text{V}}_1}\,{\text{ = }}\dfrac{{\,0.4\,{\text{M}}\,\, \times \,\,{\text{200}}\,{\text{ml}}}}{{10\,{\text{M}}\,}}$
$\Rightarrow {{\text{V}}_1}\,{\text{ = }}8\,{\text{ml}}$
So, $8$ml of $10\,{\text{M}}$ stock solution is required to prepare a $200$ml solution$0.4\,{\text{M}}$${\text{HCl}}$.
Therefore, option (C) $8\,{\text{mL}}$is correct.
Note: If the molar mass of the solute is not given, it can be calculated by adding the mass of each atom of the compound. The unit of molarity is mol/L so, it is necessary to convert the unit of solution volume from ml to L. The unit of molarity is represented by M. The small ‘m’ represents the unit of molality.
Complete Step by step answer: $29.2$% (w/w) ${\text{HCl}}$ stock means that $29.2$ gram of hydrochloric acid is present in $100$ gram of solution.
Determine the number of mole of hydrochloric acid as follows:
${\text{Mole}}\,{\text{ = }}\,\dfrac{{{\text{Mass}}}}{{{\text{Molar}}\,{\text{mass}}}}$
Substitute ${\text{36}}{\text{.5}}\,{\text{g}}\,{\text{mo}}{{\text{l}}^{ - 1}}$ for molar mass and $29.2$ gram for mass.
${\text{Mole}}\,{\text{ = }}\,\dfrac{{29.2\,\,{\text{g}}}}{{{\text{36}}{\text{.5}}\,{\text{g}}\,{\text{mo}}{{\text{l}}^{ - 1}}}}$
${\text{Mole}}\,{\text{ = }}\,0.8\,{\text{mol}}$
So, the mole of hydrochloric acid is$0.8$.
Use the density formula to determine the volume of the solution as follows
${\text{density}}\,{\text{ = }}\,\dfrac{{{\text{mass}}}}{{{\text{volume}}}}$
Substitute ${\text{1}}{\text{.25}}\,{\text{g}}\,{\text{m}}{{\text{l}}^{ - 1}}$for density and $100$ gram for mass of the solution.
${\text{1}}{\text{.25}}\,{\text{g}}\,{\text{m}}{{\text{l}}^{ - 1}}\,{\text{ = }}\,\dfrac{{{\text{100}}\,{\text{g}}}}{{{\text{volume}}}}$
${\text{volume = }}\,\dfrac{{{\text{100}}\,{\text{g}}}}{{{\text{1}}{\text{.25}}\,{\text{g}}\,{\text{m}}{{\text{l}}^{ - 1}}}}$
$\Rightarrow {\text{volume = }}\,80\,{\text{ml}}$
Convert the volume of solution from ml to L as follows:
$1000\,{\text{ml}}\,{\text{ = }}\,{\text{1}}\,{\text{L}}$
$\Rightarrow 80\,{\text{ml}}\,{\text{ = }}\,0.08\,{\text{L}}$
The formula of molarity is as follows:
${\text{Molarity}}\,{\text{ = }}\,\dfrac{{{\text{Moles}}\,{\text{of}}\,{\text{solute}}}}{{{\text{L of solution}}}}$
Substitute $0.8$ for moles of solute and $0.08$ ml for volume of solution.
${\text{Molarity}}\,{\text{ = }}\,\dfrac{{0.8\,{\text{mol}}}}{{0.08\,{\text{L}}}}$
$\Rightarrow {\text{Molarity}}\,{\text{ = }}\,{\text{10}}\,{\text{M}}$
So, the molarity of the stock solution is $10\,{\text{M}}$.
Now we will determine the volume of $10\,{\text{M}}$${\text{HCl}}$ stock solution required to prepare the $200$ml of$0.4\,{\text{M}}$${\text{HCl}}$ as follows:
${{\text{M}}_{\text{1}}}{{\text{V}}_{\text{1}}}\,{\text{ = }}\,{{\text{M}}_{\text{2}}}{{\text{V}}_{\text{2}}}$
Where,
${{\text{M}}_{\text{1}}}$ is the molarity of the solution having
$ {{\text{V}}_{\text{1}}}$ volume.
${{\text{M}}_{\text{2}}}$ is the molarity of the solution having ${{\text{V}}_{\text{2}}}$ volume.
Substitute $10\,{\text{M}}$for${{\text{M}}_{\text{1}}}$, $200$ml for ${{\text{V}}_{\text{2}}}$and $0.4\,{\text{M}}$ for ${{\text{M}}_{\text{2}}}$.
$\Rightarrow 10\,{\text{M}}\,\, \times \,\,{{\text{V}}_1}\,{\text{ = }}\,0.4\,{\text{M}}\,\, \times \,\,{\text{200}}\,{\text{ml}}$
$\Rightarrow {{\text{V}}_1}\,{\text{ = }}\dfrac{{\,0.4\,{\text{M}}\,\, \times \,\,{\text{200}}\,{\text{ml}}}}{{10\,{\text{M}}\,}}$
$\Rightarrow {{\text{V}}_1}\,{\text{ = }}8\,{\text{ml}}$
So, $8$ml of $10\,{\text{M}}$ stock solution is required to prepare a $200$ml solution$0.4\,{\text{M}}$${\text{HCl}}$.
Therefore, option (C) $8\,{\text{mL}}$is correct.
Note: If the molar mass of the solute is not given, it can be calculated by adding the mass of each atom of the compound. The unit of molarity is mol/L so, it is necessary to convert the unit of solution volume from ml to L. The unit of molarity is represented by M. The small ‘m’ represents the unit of molality.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
At which age domestication of animals started A Neolithic class 11 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE