
$29.2$% (w/w) ${\text{HCl}}$stock solution has a density of ${\text{1}}{\text{.25}}\,{\text{g}}\,{\text{m}}{{\text{l}}^{ - 1}}$. The molecular weight of ${\text{HCl}}$is ${\text{36}}{\text{.5}}\,{\text{g}}\,{\text{mo}}{{\text{l}}^{ - 1}}$. The volume (ml) of stock solution required to prepare a $200$ml solution $0.4\,{\text{M}}$${\text{HCl}}$is:
A. ${\text{5}}\,{\text{mL}}$
B. ${\text{6}}\,{\text{mL}}$
C. $8\,{\text{mL}}$
D. $15\,{\text{mL}}$
Answer
548.1k+ views
Hint: We will determine the number of mole of solute (hydrochloric acid) by using the mole formula. Then the amount of solvent (water) in kg and then molarity of the solution. Then by comparing the molarity and volume product we can determine the volume of the stock solution.
Complete Step by step answer: $29.2$% (w/w) ${\text{HCl}}$ stock means that $29.2$ gram of hydrochloric acid is present in $100$ gram of solution.
Determine the number of mole of hydrochloric acid as follows:
${\text{Mole}}\,{\text{ = }}\,\dfrac{{{\text{Mass}}}}{{{\text{Molar}}\,{\text{mass}}}}$
Substitute ${\text{36}}{\text{.5}}\,{\text{g}}\,{\text{mo}}{{\text{l}}^{ - 1}}$ for molar mass and $29.2$ gram for mass.
${\text{Mole}}\,{\text{ = }}\,\dfrac{{29.2\,\,{\text{g}}}}{{{\text{36}}{\text{.5}}\,{\text{g}}\,{\text{mo}}{{\text{l}}^{ - 1}}}}$
${\text{Mole}}\,{\text{ = }}\,0.8\,{\text{mol}}$
So, the mole of hydrochloric acid is$0.8$.
Use the density formula to determine the volume of the solution as follows
${\text{density}}\,{\text{ = }}\,\dfrac{{{\text{mass}}}}{{{\text{volume}}}}$
Substitute ${\text{1}}{\text{.25}}\,{\text{g}}\,{\text{m}}{{\text{l}}^{ - 1}}$for density and $100$ gram for mass of the solution.
${\text{1}}{\text{.25}}\,{\text{g}}\,{\text{m}}{{\text{l}}^{ - 1}}\,{\text{ = }}\,\dfrac{{{\text{100}}\,{\text{g}}}}{{{\text{volume}}}}$
${\text{volume = }}\,\dfrac{{{\text{100}}\,{\text{g}}}}{{{\text{1}}{\text{.25}}\,{\text{g}}\,{\text{m}}{{\text{l}}^{ - 1}}}}$
$\Rightarrow {\text{volume = }}\,80\,{\text{ml}}$
Convert the volume of solution from ml to L as follows:
$1000\,{\text{ml}}\,{\text{ = }}\,{\text{1}}\,{\text{L}}$
$\Rightarrow 80\,{\text{ml}}\,{\text{ = }}\,0.08\,{\text{L}}$
The formula of molarity is as follows:
${\text{Molarity}}\,{\text{ = }}\,\dfrac{{{\text{Moles}}\,{\text{of}}\,{\text{solute}}}}{{{\text{L of solution}}}}$
Substitute $0.8$ for moles of solute and $0.08$ ml for volume of solution.
${\text{Molarity}}\,{\text{ = }}\,\dfrac{{0.8\,{\text{mol}}}}{{0.08\,{\text{L}}}}$
$\Rightarrow {\text{Molarity}}\,{\text{ = }}\,{\text{10}}\,{\text{M}}$
So, the molarity of the stock solution is $10\,{\text{M}}$.
Now we will determine the volume of $10\,{\text{M}}$${\text{HCl}}$ stock solution required to prepare the $200$ml of$0.4\,{\text{M}}$${\text{HCl}}$ as follows:
${{\text{M}}_{\text{1}}}{{\text{V}}_{\text{1}}}\,{\text{ = }}\,{{\text{M}}_{\text{2}}}{{\text{V}}_{\text{2}}}$
Where,
${{\text{M}}_{\text{1}}}$ is the molarity of the solution having
$ {{\text{V}}_{\text{1}}}$ volume.
${{\text{M}}_{\text{2}}}$ is the molarity of the solution having ${{\text{V}}_{\text{2}}}$ volume.
Substitute $10\,{\text{M}}$for${{\text{M}}_{\text{1}}}$, $200$ml for ${{\text{V}}_{\text{2}}}$and $0.4\,{\text{M}}$ for ${{\text{M}}_{\text{2}}}$.
$\Rightarrow 10\,{\text{M}}\,\, \times \,\,{{\text{V}}_1}\,{\text{ = }}\,0.4\,{\text{M}}\,\, \times \,\,{\text{200}}\,{\text{ml}}$
$\Rightarrow {{\text{V}}_1}\,{\text{ = }}\dfrac{{\,0.4\,{\text{M}}\,\, \times \,\,{\text{200}}\,{\text{ml}}}}{{10\,{\text{M}}\,}}$
$\Rightarrow {{\text{V}}_1}\,{\text{ = }}8\,{\text{ml}}$
So, $8$ml of $10\,{\text{M}}$ stock solution is required to prepare a $200$ml solution$0.4\,{\text{M}}$${\text{HCl}}$.
Therefore, option (C) $8\,{\text{mL}}$is correct.
Note: If the molar mass of the solute is not given, it can be calculated by adding the mass of each atom of the compound. The unit of molarity is mol/L so, it is necessary to convert the unit of solution volume from ml to L. The unit of molarity is represented by M. The small ‘m’ represents the unit of molality.
Complete Step by step answer: $29.2$% (w/w) ${\text{HCl}}$ stock means that $29.2$ gram of hydrochloric acid is present in $100$ gram of solution.
Determine the number of mole of hydrochloric acid as follows:
${\text{Mole}}\,{\text{ = }}\,\dfrac{{{\text{Mass}}}}{{{\text{Molar}}\,{\text{mass}}}}$
Substitute ${\text{36}}{\text{.5}}\,{\text{g}}\,{\text{mo}}{{\text{l}}^{ - 1}}$ for molar mass and $29.2$ gram for mass.
${\text{Mole}}\,{\text{ = }}\,\dfrac{{29.2\,\,{\text{g}}}}{{{\text{36}}{\text{.5}}\,{\text{g}}\,{\text{mo}}{{\text{l}}^{ - 1}}}}$
${\text{Mole}}\,{\text{ = }}\,0.8\,{\text{mol}}$
So, the mole of hydrochloric acid is$0.8$.
Use the density formula to determine the volume of the solution as follows
${\text{density}}\,{\text{ = }}\,\dfrac{{{\text{mass}}}}{{{\text{volume}}}}$
Substitute ${\text{1}}{\text{.25}}\,{\text{g}}\,{\text{m}}{{\text{l}}^{ - 1}}$for density and $100$ gram for mass of the solution.
${\text{1}}{\text{.25}}\,{\text{g}}\,{\text{m}}{{\text{l}}^{ - 1}}\,{\text{ = }}\,\dfrac{{{\text{100}}\,{\text{g}}}}{{{\text{volume}}}}$
${\text{volume = }}\,\dfrac{{{\text{100}}\,{\text{g}}}}{{{\text{1}}{\text{.25}}\,{\text{g}}\,{\text{m}}{{\text{l}}^{ - 1}}}}$
$\Rightarrow {\text{volume = }}\,80\,{\text{ml}}$
Convert the volume of solution from ml to L as follows:
$1000\,{\text{ml}}\,{\text{ = }}\,{\text{1}}\,{\text{L}}$
$\Rightarrow 80\,{\text{ml}}\,{\text{ = }}\,0.08\,{\text{L}}$
The formula of molarity is as follows:
${\text{Molarity}}\,{\text{ = }}\,\dfrac{{{\text{Moles}}\,{\text{of}}\,{\text{solute}}}}{{{\text{L of solution}}}}$
Substitute $0.8$ for moles of solute and $0.08$ ml for volume of solution.
${\text{Molarity}}\,{\text{ = }}\,\dfrac{{0.8\,{\text{mol}}}}{{0.08\,{\text{L}}}}$
$\Rightarrow {\text{Molarity}}\,{\text{ = }}\,{\text{10}}\,{\text{M}}$
So, the molarity of the stock solution is $10\,{\text{M}}$.
Now we will determine the volume of $10\,{\text{M}}$${\text{HCl}}$ stock solution required to prepare the $200$ml of$0.4\,{\text{M}}$${\text{HCl}}$ as follows:
${{\text{M}}_{\text{1}}}{{\text{V}}_{\text{1}}}\,{\text{ = }}\,{{\text{M}}_{\text{2}}}{{\text{V}}_{\text{2}}}$
Where,
${{\text{M}}_{\text{1}}}$ is the molarity of the solution having
$ {{\text{V}}_{\text{1}}}$ volume.
${{\text{M}}_{\text{2}}}$ is the molarity of the solution having ${{\text{V}}_{\text{2}}}$ volume.
Substitute $10\,{\text{M}}$for${{\text{M}}_{\text{1}}}$, $200$ml for ${{\text{V}}_{\text{2}}}$and $0.4\,{\text{M}}$ for ${{\text{M}}_{\text{2}}}$.
$\Rightarrow 10\,{\text{M}}\,\, \times \,\,{{\text{V}}_1}\,{\text{ = }}\,0.4\,{\text{M}}\,\, \times \,\,{\text{200}}\,{\text{ml}}$
$\Rightarrow {{\text{V}}_1}\,{\text{ = }}\dfrac{{\,0.4\,{\text{M}}\,\, \times \,\,{\text{200}}\,{\text{ml}}}}{{10\,{\text{M}}\,}}$
$\Rightarrow {{\text{V}}_1}\,{\text{ = }}8\,{\text{ml}}$
So, $8$ml of $10\,{\text{M}}$ stock solution is required to prepare a $200$ml solution$0.4\,{\text{M}}$${\text{HCl}}$.
Therefore, option (C) $8\,{\text{mL}}$is correct.
Note: If the molar mass of the solute is not given, it can be calculated by adding the mass of each atom of the compound. The unit of molarity is mol/L so, it is necessary to convert the unit of solution volume from ml to L. The unit of molarity is represented by M. The small ‘m’ represents the unit of molality.
Recently Updated Pages
Master Class 11 Chemistry: Engaging Questions & Answers for Success

Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

How many 5 digit telephone numbers can be constructed class 11 maths CBSE

Draw a well labelled diagram of reflex arc and explain class 11 biology CBSE

What is the difference between noise and music Can class 11 physics CBSE

Trending doubts
In what year Guru Nanak Dev ji was born A15 April 1469 class 11 social science CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

10 examples of friction in our daily life

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

