
$25.3g$ of sodium carbonate $N{a_2}C{O_3}$ is dissolved in enough water to make $250mL$ of solution. If sodium carbonate dissociates completely molar concentration of sodium ions and carbonate ions are respectively (molar mass of $N{a_2}C{O_3}$ is $106gmo{l^{ - 1}}$)
Answer
506.7k+ views
Hint: In the question they gave volume, mass of the solution. By that, you can calculate the molarity of the solution. Molarity is defined as the number of moles of solute per liter of solution.
Molarity of solution $ = $ moles of the solute$/$litres of solution
Complete answer: Mass of the solute $ = $$25.3g$
Molar mass of solution $ = $$106gmo{l^{ - 1}}$
Volume of solution $ = $$250mL$
If the solute is dissolved in water then the solute splits into ions. Like that the sodium carbonate dissociates completely then splits into sodium and carbonate ions.
$N{a_2}C{O_3} \to 2N{a^ + } + C{O_3}^ - $
Molar concentration is nothing but molarity of solution
Molarity of solution $ = $ moles of the solute$/$litres of solution
$M = n/v$
Number of moles of solute$ = $$25.3/106 = 0.239moles$
Molarity of solution $ = $$0.239/0.25 = 0.956M$
As sodium carbonate dissociates into two sodium ions, the total molar concentration is calculated for two sodium ions.
Concentration of $N{a^ + } = $ $2 \times 0.956 = 1.912M$
Concentration of $C{O_3}^ - = $$0.956M$
Note:
Concentrate more on balancing the equations and be clear about the molarity, molality, and normality of solutions. Molarity is different from molality so don’t get confused about the terms. The molarity of a solution is related to its molecular weight of the solution and the molality of the solution is related to its equivalent weight of the solution.
Molarity of solution $ = $ moles of the solute$/$litres of solution
Complete answer: Mass of the solute $ = $$25.3g$
Molar mass of solution $ = $$106gmo{l^{ - 1}}$
Volume of solution $ = $$250mL$
If the solute is dissolved in water then the solute splits into ions. Like that the sodium carbonate dissociates completely then splits into sodium and carbonate ions.
$N{a_2}C{O_3} \to 2N{a^ + } + C{O_3}^ - $
Molar concentration is nothing but molarity of solution
Molarity of solution $ = $ moles of the solute$/$litres of solution
$M = n/v$
Number of moles of solute$ = $$25.3/106 = 0.239moles$
Molarity of solution $ = $$0.239/0.25 = 0.956M$
As sodium carbonate dissociates into two sodium ions, the total molar concentration is calculated for two sodium ions.
Concentration of $N{a^ + } = $ $2 \times 0.956 = 1.912M$
Concentration of $C{O_3}^ - = $$0.956M$
Note:
Concentrate more on balancing the equations and be clear about the molarity, molality, and normality of solutions. Molarity is different from molality so don’t get confused about the terms. The molarity of a solution is related to its molecular weight of the solution and the molality of the solution is related to its equivalent weight of the solution.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 11 biology CBSE

What is the difference between superposition and e class 11 physics CBSE

State and prove Bernoullis theorem class 11 physics CBSE

1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE

State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
