Answer
Verified
445.5k+ views
Hint: We have to calculate the equilibrium constant \[\left( {{K_c}} \right)\]of the balanced reaction. We can use the law of mass action to solve this question. Before that, we must know the equilibrium constant is the value of its reaction quotient at chemical equilibrium.
The equilibrium constant for a given reaction depends on temperature only. For endothermic reactions equilibrium constant will increase on raising the temperature while for exothermic reactions equilibrium constant will decrease on raising the temperature.
Complete step by step answer:
In the question, they have given
\[2{\text{ }}moles\]of \[{N_2}\]and \[6{\text{ }}moles\]of \[{H_2}\]initially
Therefore, \[50\% {\text{ }}of{\text{ }}2{\text{ }}mol{\text{ }}{N_2} = {\text{ }}2 \times \dfrac{{50}}{{100}} = 1mol\]
So, \[1{\text{ }}mol{\text{ }}of{\text{ }}{N_2}\]has been reacted up to equilibrium establishment and \[1{\text{ }}mol{\text{ }}of{\text{ }}{N_2}\] left at equilibrium.
For reaction of \[1{\text{ }}mol{\text{ }}of{\text{ }}{N_2}\] , we need \[3{\text{ }}mol{\text{ }}of{\text{ }}{H_2}\]according to stoichiometry of reaction.
\[1{\text{ }}mol{\text{ }}of{\text{ }}{N_2}\] will form\[2{\text{ }}mol{\text{ }}of{\text{ }}N{H_3}\].
Balanced chemical reaction:
\[{N_2}_{\left( g \right)} + 3{H_2}_{\left( g \right)} \rightleftharpoons 2N{H_3}_{\left( g \right)}\]
We can write the equilibrium constant by use of law of mass value as
\[{K_c}{\text{ }} = {\text{ }}\dfrac{{{{\left[ {N{H_3}} \right]}^2}}}{{\left[ {{N_2}} \right].{{\left[ {{H_2}} \right]}^3}}}\] ;
Here \[\left[ {N{H_3}} \right]\] = active mass or molar concentration of ammonia at equilibrium state.
\[\left[ {{N_2}} \right]\]= Active mass or molar concentration of Nitrogen gas at equilibrium state.
\[\left[ {{H_2}} \right]\]= Active mass or molar concentration of Hydrogen gas at equilibrium state.
We know the molar concentration of ammonia, nitrogen and hydrogen. Therefore, we can substitute the value in this equation
\[{K_c} = \dfrac{{{{(2)}^2}}}{{1x{{(3)}^3}}} = \dfrac{4}{{27}}\]
\[{K_c} = {\text{ }}4/27\]
Hence, the equilibrium constant for balanced reaction is \[{K_c} = {\text{ }}4/27\]
Note:
We are always using equilibrium molar concentrations in the expression of equilibrium constant\[\left( {{K_c}} \right)\]. Concentrations of reactants and products remain constant at equilibrium state. The value of the equilibrium constant does not depend on the volume, moles, concentration, pressure, etc. The equilibrium constant value for a reaction is the measurement of the yield of the reaction. The high value of the equilibrium constant shows the high yield of reaction and the low value of the equilibrium constant shows low yield of the reaction.
The equilibrium constant for a given reaction depends on temperature only. For endothermic reactions equilibrium constant will increase on raising the temperature while for exothermic reactions equilibrium constant will decrease on raising the temperature.
Complete step by step answer:
In the question, they have given
\[2{\text{ }}moles\]of \[{N_2}\]and \[6{\text{ }}moles\]of \[{H_2}\]initially
Therefore, \[50\% {\text{ }}of{\text{ }}2{\text{ }}mol{\text{ }}{N_2} = {\text{ }}2 \times \dfrac{{50}}{{100}} = 1mol\]
So, \[1{\text{ }}mol{\text{ }}of{\text{ }}{N_2}\]has been reacted up to equilibrium establishment and \[1{\text{ }}mol{\text{ }}of{\text{ }}{N_2}\] left at equilibrium.
For reaction of \[1{\text{ }}mol{\text{ }}of{\text{ }}{N_2}\] , we need \[3{\text{ }}mol{\text{ }}of{\text{ }}{H_2}\]according to stoichiometry of reaction.
\[1{\text{ }}mol{\text{ }}of{\text{ }}{N_2}\] will form\[2{\text{ }}mol{\text{ }}of{\text{ }}N{H_3}\].
Balanced chemical reaction:
\[{N_2}_{\left( g \right)} + 3{H_2}_{\left( g \right)} \rightleftharpoons 2N{H_3}_{\left( g \right)}\]
Given | 2mol | 6mol | 0 |
At equilibrium moles | 2-1 = 1 | 6-3=3 | 2 |
Equilibrium conc. | 1/1 | 3/1 | 2/1 |
1M | 3M | 2M |
We can write the equilibrium constant by use of law of mass value as
\[{K_c}{\text{ }} = {\text{ }}\dfrac{{{{\left[ {N{H_3}} \right]}^2}}}{{\left[ {{N_2}} \right].{{\left[ {{H_2}} \right]}^3}}}\] ;
Here \[\left[ {N{H_3}} \right]\] = active mass or molar concentration of ammonia at equilibrium state.
\[\left[ {{N_2}} \right]\]= Active mass or molar concentration of Nitrogen gas at equilibrium state.
\[\left[ {{H_2}} \right]\]= Active mass or molar concentration of Hydrogen gas at equilibrium state.
We know the molar concentration of ammonia, nitrogen and hydrogen. Therefore, we can substitute the value in this equation
\[{K_c} = \dfrac{{{{(2)}^2}}}{{1x{{(3)}^3}}} = \dfrac{4}{{27}}\]
\[{K_c} = {\text{ }}4/27\]
Hence, the equilibrium constant for balanced reaction is \[{K_c} = {\text{ }}4/27\]
Note:
We are always using equilibrium molar concentrations in the expression of equilibrium constant\[\left( {{K_c}} \right)\]. Concentrations of reactants and products remain constant at equilibrium state. The value of the equilibrium constant does not depend on the volume, moles, concentration, pressure, etc. The equilibrium constant value for a reaction is the measurement of the yield of the reaction. The high value of the equilibrium constant shows the high yield of reaction and the low value of the equilibrium constant shows low yield of the reaction.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
At which age domestication of animals started A Neolithic class 11 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Summary of the poem Where the Mind is Without Fear class 8 english CBSE
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE