Answer
Verified
447.6k+ views
Hint: We must understand that there is no net loss in mass during the electrolysis. Therefore, the product will be \[Sn\]and \[S{n^{4 + }}\]respectively at cathode and anode. And the mass ratio is used according to the stoichiometry of the reaction.
Complete step by step answer:
We can write the chemical reaction during electrolysis as
$
2SnC{l_2}{\text{ }} \to {\text{ }}SnC{l_4}{\text{ }} + {\text{ }}Sn \\
2{\text{ }}mol{\text{ 1 mol 1 mol}} \\
{\text{2 x 190 g 1x261 g 1x119 g}} \\
$
No loss in mass of solution so mass loss due to deposition of \[Sn\] will be equal to mass gain due to the production of \[SnC{l_4}\].
Chlorine gas will not release on the anode as no loss in mass given in the question.
Here, we comparing the reacted amounts of the reactants
$
2SnC{l_2}{\text{ }} \to {\text{ }}SnC{l_4}{\text{ }} + {\text{ }}Sn \\
2{\text{ }}mol{\text{ 1 mol 1 mol}} \\
{\text{2 x 190 g 1x261 g 1x119 g}} \\
\dfrac{{mass{\text{ of Sn deposited}}}}{{mass{\text{ of SnC}}{{\text{l}}_4}{\text{ produced }}}} = \dfrac{{119}}{{261}} \\
$$
\dfrac{{mass{\text{ }} of {\text{ }} Sn {\text{ }}deposited}}{{mass{\text{ }}of{\text{ }} SnC{l_4}{\text{ }}produced{\text{ }}}} = \dfrac{{119}}{{261}} \\
\dfrac{{0.119}}{x} = \dfrac{{119}}{{261}} \\
x = {\text{ }}0.261{\text{ }}g \\
$
Here x is the mass of \[SnC{l_4}\] produced at the anode.
Mass of \[SnC{l_2}\]reacted = $\dfrac{{380}}{{119}}x0.119{\text{ }}g = 0.380{\text{ }}g$
Remaining unreacted mass of \[SnC{l_2}\] = $19 - {\text{ }}0.380 = 18.62{\text{ }}g$
So, mass ratio of \[SnC{l_2}\] and \[SnC{l_4}\] = $\dfrac{{18.62}}{{0.261}} = \dfrac{{71.34}}{1}$
Mass of \[SnC{l_2}\] : mass of \[SnC{l_4}\] = \[71.34:1\].
Note:
We can define a redox reaction as a chemical reaction in which electrons are transferred between two reactant species participating in the reaction. Redox reactions are based on electron transfers and electron density around any atom will change during redox reactions. Electron density will decrease in case of oxidation and increase in case of reduction.
Also, we must understand that the electron acceptor species is known as an oxidizing agent while the electron donor species is known as the reducing agent. The oxidizing agent undergoes a reduction of itself while the reducing agent undergoes oxidation of itself. The oxidation process is known as de-electronation while the reduction process is known as the electronation process.
Complete step by step answer:
We can write the chemical reaction during electrolysis as
$
2SnC{l_2}{\text{ }} \to {\text{ }}SnC{l_4}{\text{ }} + {\text{ }}Sn \\
2{\text{ }}mol{\text{ 1 mol 1 mol}} \\
{\text{2 x 190 g 1x261 g 1x119 g}} \\
$
No loss in mass of solution so mass loss due to deposition of \[Sn\] will be equal to mass gain due to the production of \[SnC{l_4}\].
Chlorine gas will not release on the anode as no loss in mass given in the question.
Here, we comparing the reacted amounts of the reactants
$
2SnC{l_2}{\text{ }} \to {\text{ }}SnC{l_4}{\text{ }} + {\text{ }}Sn \\
2{\text{ }}mol{\text{ 1 mol 1 mol}} \\
{\text{2 x 190 g 1x261 g 1x119 g}} \\
\dfrac{{mass{\text{ of Sn deposited}}}}{{mass{\text{ of SnC}}{{\text{l}}_4}{\text{ produced }}}} = \dfrac{{119}}{{261}} \\
$$
\dfrac{{mass{\text{ }} of {\text{ }} Sn {\text{ }}deposited}}{{mass{\text{ }}of{\text{ }} SnC{l_4}{\text{ }}produced{\text{ }}}} = \dfrac{{119}}{{261}} \\
\dfrac{{0.119}}{x} = \dfrac{{119}}{{261}} \\
x = {\text{ }}0.261{\text{ }}g \\
$
Here x is the mass of \[SnC{l_4}\] produced at the anode.
Mass of \[SnC{l_2}\]reacted = $\dfrac{{380}}{{119}}x0.119{\text{ }}g = 0.380{\text{ }}g$
Remaining unreacted mass of \[SnC{l_2}\] = $19 - {\text{ }}0.380 = 18.62{\text{ }}g$
So, mass ratio of \[SnC{l_2}\] and \[SnC{l_4}\] = $\dfrac{{18.62}}{{0.261}} = \dfrac{{71.34}}{1}$
Mass of \[SnC{l_2}\] : mass of \[SnC{l_4}\] = \[71.34:1\].
Note:
We can define a redox reaction as a chemical reaction in which electrons are transferred between two reactant species participating in the reaction. Redox reactions are based on electron transfers and electron density around any atom will change during redox reactions. Electron density will decrease in case of oxidation and increase in case of reduction.
Also, we must understand that the electron acceptor species is known as an oxidizing agent while the electron donor species is known as the reducing agent. The oxidizing agent undergoes a reduction of itself while the reducing agent undergoes oxidation of itself. The oxidation process is known as de-electronation while the reduction process is known as the electronation process.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Choose the antonym of the word given below Furious class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE