Answer
Verified
425.4k+ views
Hint: To solve these types of problems, we need to use some set theory. Let A be a set then N(A) represents the number of elements present in it. If there are two sets A and B then \[A\cup B\] is a set called the union of A and B it consists of the elements that belong to either A or B and \[A\cap B\] the set is called the intersection of A and B, which consists of elements that belong to both A and B.
We will use the formula for set theory that states that \[N\left( A\cap B \right)=N\left( A \right)+N\left( B \right)-N\left( A\cup B \right)\].
Complete step by step solution:
We are given that the total number of students that are studying is 150. We are given that 62 percent of total students study English, let A be the set of students who study English so \[N\left( A \right)=0.62\times 150=93\]. Also, we are given that 68 percent of students study Maths, let B is set of students who study Maths then \[N\left( B \right)=0.68\times 150=102\].
As the total number of students is 150, \[N\left( A\cup B \right)=150\]. We need to find the number of students who study both subjects, which means we need to find \[N\left( A\cap B \right)\].
Using the set theory formula which states \[N\left( A\cap B \right)=N\left( A \right)+N\left( B \right)-N\left( A\cup B \right)\]. Substituting the values, we get
\[\begin{align}
& \Rightarrow N\left( A\cap B \right)=N\left( A \right)+N\left( B \right)-N\left( A\cup B \right) \\
& \Rightarrow N\left( A\cap B \right)=93+102-150 \\
& \Rightarrow N\left( A\cap B \right)=45 \\
\end{align}\]
Hence, the number of students studying both subjects is 45.
Note: Using the set theory properties to solve these types of problems makes it easier to solve. One should know the properties and formulas of sets to use it. We used the formula \[N\left( A\cap B \right)=N\left( A \right)+N\left( B \right)-N\left( A\cup B \right)\]. We can also use it for more than two sets.
We will use the formula for set theory that states that \[N\left( A\cap B \right)=N\left( A \right)+N\left( B \right)-N\left( A\cup B \right)\].
Complete step by step solution:
We are given that the total number of students that are studying is 150. We are given that 62 percent of total students study English, let A be the set of students who study English so \[N\left( A \right)=0.62\times 150=93\]. Also, we are given that 68 percent of students study Maths, let B is set of students who study Maths then \[N\left( B \right)=0.68\times 150=102\].
As the total number of students is 150, \[N\left( A\cup B \right)=150\]. We need to find the number of students who study both subjects, which means we need to find \[N\left( A\cap B \right)\].
Using the set theory formula which states \[N\left( A\cap B \right)=N\left( A \right)+N\left( B \right)-N\left( A\cup B \right)\]. Substituting the values, we get
\[\begin{align}
& \Rightarrow N\left( A\cap B \right)=N\left( A \right)+N\left( B \right)-N\left( A\cup B \right) \\
& \Rightarrow N\left( A\cap B \right)=93+102-150 \\
& \Rightarrow N\left( A\cap B \right)=45 \\
\end{align}\]
Hence, the number of students studying both subjects is 45.
Note: Using the set theory properties to solve these types of problems makes it easier to solve. One should know the properties and formulas of sets to use it. We used the formula \[N\left( A\cap B \right)=N\left( A \right)+N\left( B \right)-N\left( A\cup B \right)\]. We can also use it for more than two sets.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE