
\[10{\text{ g}}\] of cane sugar (molecular mass = 342) in \[1{\text{ }} \times {\text{ }}{10^{ - 3}}{m^3}\] of solution produces an osmotic pressure of \[6.68{\text{ }} \times {10^4}N{m^{ - 2}}\] at \[273{\text{ K}}\]. Calculate the value of R in SI units.
A. \[8.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}\]
B. \[9.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}\]
C. \[7.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}\]
D. \[5.36841{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}\]
Answer
569.7k+ views
Hint:First calculate the molarity of cane sugar and then use the formula for the osmotic pressure. Take care of units.
Complete answer:
The volume of the solution is \[1{\text{ }} \times {\text{ }}{10^{ - 3}}{m^3}\] . Convert the unit of the volume into liters.
\[V = 1{\text{ }} \times {\text{ }}{10^{ - 3}}{m^3} \times \dfrac{{1000{\text{ L}}}}{{1{m^3}}} = 1{\text{ L}}\]
The osmotic pressure \[\pi \] is given as \[6.68{\text{ }} \times {10^4}N{m^{ - 2}}\] .
The absolute temperature T is \[273{\text{ K}}\] .
The weight w of cane sugar is \[10{\text{ g}}\]
The molecular weight M.W of cane sugar is 342.
First calculate the concentration C of cane sugar
\[C = \dfrac{w}{{M.W \times V}} = \dfrac{{10{\text{ g}}}}{{342{\text{ g/mol }} \times {\text{ 1 L}}}} = 0.02924M\]
The van't Hoff factor ‘i’ is one as cane sugar is non electrolyte.
Write the expression for the osmotic pressure \[\pi \] of solution
\[\pi = i \times C \times R \times T\]
Substitute values in the above expression and calculate the value of the ideal gas constant R.
\[
\pi = i \times C \times R \times T \\
\Rightarrow 6.68{\text{ }} \times {10^4}N{m^{ - 2}} = 1 \times 0.02924M \times R \times 273{\text{ K}} \\
\Rightarrow R = 8368N{m^{ - 2}}L \\
\Rightarrow R = \;8.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}
\]
The value of R is \[\;8.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}\]
Hence, the correct option is the option A
Note:
You can convert the unit of R from \[8368N{m^{ - 2}}L\] to \[\;8.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}\] by using two relations \[1L = 0.001{m^3}\] and \[1{\text{ J = 1 Nm}}\]
This is as shown below.
\[
R = 8368N{m^{ - 2}}L \times \dfrac{{0.001{m^3}}}{{1L}} \times \dfrac{{{\text{1 J}}}}{{{\text{1 Nm}}}} \\
\Rightarrow R = \;8.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}} \\
\]
Complete answer:
The volume of the solution is \[1{\text{ }} \times {\text{ }}{10^{ - 3}}{m^3}\] . Convert the unit of the volume into liters.
\[V = 1{\text{ }} \times {\text{ }}{10^{ - 3}}{m^3} \times \dfrac{{1000{\text{ L}}}}{{1{m^3}}} = 1{\text{ L}}\]
The osmotic pressure \[\pi \] is given as \[6.68{\text{ }} \times {10^4}N{m^{ - 2}}\] .
The absolute temperature T is \[273{\text{ K}}\] .
The weight w of cane sugar is \[10{\text{ g}}\]
The molecular weight M.W of cane sugar is 342.
First calculate the concentration C of cane sugar
\[C = \dfrac{w}{{M.W \times V}} = \dfrac{{10{\text{ g}}}}{{342{\text{ g/mol }} \times {\text{ 1 L}}}} = 0.02924M\]
The van't Hoff factor ‘i’ is one as cane sugar is non electrolyte.
Write the expression for the osmotic pressure \[\pi \] of solution
\[\pi = i \times C \times R \times T\]
Substitute values in the above expression and calculate the value of the ideal gas constant R.
\[
\pi = i \times C \times R \times T \\
\Rightarrow 6.68{\text{ }} \times {10^4}N{m^{ - 2}} = 1 \times 0.02924M \times R \times 273{\text{ K}} \\
\Rightarrow R = 8368N{m^{ - 2}}L \\
\Rightarrow R = \;8.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}
\]
The value of R is \[\;8.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}\]
Hence, the correct option is the option A
Note:
You can convert the unit of R from \[8368N{m^{ - 2}}L\] to \[\;8.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}\] by using two relations \[1L = 0.001{m^3}\] and \[1{\text{ J = 1 Nm}}\]
This is as shown below.
\[
R = 8368N{m^{ - 2}}L \times \dfrac{{0.001{m^3}}}{{1L}} \times \dfrac{{{\text{1 J}}}}{{{\text{1 Nm}}}} \\
\Rightarrow R = \;8.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}} \\
\]
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

