
\[10{\text{ g}}\] of cane sugar (molecular mass = 342) in \[1{\text{ }} \times {\text{ }}{10^{ - 3}}{m^3}\] of solution produces an osmotic pressure of \[6.68{\text{ }} \times {10^4}N{m^{ - 2}}\] at \[273{\text{ K}}\]. Calculate the value of R in SI units.
A. \[8.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}\]
B. \[9.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}\]
C. \[7.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}\]
D. \[5.36841{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}\]
Answer
558.3k+ views
Hint:First calculate the molarity of cane sugar and then use the formula for the osmotic pressure. Take care of units.
Complete answer:
The volume of the solution is \[1{\text{ }} \times {\text{ }}{10^{ - 3}}{m^3}\] . Convert the unit of the volume into liters.
\[V = 1{\text{ }} \times {\text{ }}{10^{ - 3}}{m^3} \times \dfrac{{1000{\text{ L}}}}{{1{m^3}}} = 1{\text{ L}}\]
The osmotic pressure \[\pi \] is given as \[6.68{\text{ }} \times {10^4}N{m^{ - 2}}\] .
The absolute temperature T is \[273{\text{ K}}\] .
The weight w of cane sugar is \[10{\text{ g}}\]
The molecular weight M.W of cane sugar is 342.
First calculate the concentration C of cane sugar
\[C = \dfrac{w}{{M.W \times V}} = \dfrac{{10{\text{ g}}}}{{342{\text{ g/mol }} \times {\text{ 1 L}}}} = 0.02924M\]
The van't Hoff factor ‘i’ is one as cane sugar is non electrolyte.
Write the expression for the osmotic pressure \[\pi \] of solution
\[\pi = i \times C \times R \times T\]
Substitute values in the above expression and calculate the value of the ideal gas constant R.
\[
\pi = i \times C \times R \times T \\
\Rightarrow 6.68{\text{ }} \times {10^4}N{m^{ - 2}} = 1 \times 0.02924M \times R \times 273{\text{ K}} \\
\Rightarrow R = 8368N{m^{ - 2}}L \\
\Rightarrow R = \;8.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}
\]
The value of R is \[\;8.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}\]
Hence, the correct option is the option A
Note:
You can convert the unit of R from \[8368N{m^{ - 2}}L\] to \[\;8.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}\] by using two relations \[1L = 0.001{m^3}\] and \[1{\text{ J = 1 Nm}}\]
This is as shown below.
\[
R = 8368N{m^{ - 2}}L \times \dfrac{{0.001{m^3}}}{{1L}} \times \dfrac{{{\text{1 J}}}}{{{\text{1 Nm}}}} \\
\Rightarrow R = \;8.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}} \\
\]
Complete answer:
The volume of the solution is \[1{\text{ }} \times {\text{ }}{10^{ - 3}}{m^3}\] . Convert the unit of the volume into liters.
\[V = 1{\text{ }} \times {\text{ }}{10^{ - 3}}{m^3} \times \dfrac{{1000{\text{ L}}}}{{1{m^3}}} = 1{\text{ L}}\]
The osmotic pressure \[\pi \] is given as \[6.68{\text{ }} \times {10^4}N{m^{ - 2}}\] .
The absolute temperature T is \[273{\text{ K}}\] .
The weight w of cane sugar is \[10{\text{ g}}\]
The molecular weight M.W of cane sugar is 342.
First calculate the concentration C of cane sugar
\[C = \dfrac{w}{{M.W \times V}} = \dfrac{{10{\text{ g}}}}{{342{\text{ g/mol }} \times {\text{ 1 L}}}} = 0.02924M\]
The van't Hoff factor ‘i’ is one as cane sugar is non electrolyte.
Write the expression for the osmotic pressure \[\pi \] of solution
\[\pi = i \times C \times R \times T\]
Substitute values in the above expression and calculate the value of the ideal gas constant R.
\[
\pi = i \times C \times R \times T \\
\Rightarrow 6.68{\text{ }} \times {10^4}N{m^{ - 2}} = 1 \times 0.02924M \times R \times 273{\text{ K}} \\
\Rightarrow R = 8368N{m^{ - 2}}L \\
\Rightarrow R = \;8.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}
\]
The value of R is \[\;8.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}\]
Hence, the correct option is the option A
Note:
You can convert the unit of R from \[8368N{m^{ - 2}}L\] to \[\;8.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}\] by using two relations \[1L = 0.001{m^3}\] and \[1{\text{ J = 1 Nm}}\]
This is as shown below.
\[
R = 8368N{m^{ - 2}}L \times \dfrac{{0.001{m^3}}}{{1L}} \times \dfrac{{{\text{1 J}}}}{{{\text{1 Nm}}}} \\
\Rightarrow R = \;8.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}} \\
\]
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

