
\[10{\text{ g}}\] of cane sugar (molecular mass = 342) in \[1{\text{ }} \times {\text{ }}{10^{ - 3}}{m^3}\] of solution produces an osmotic pressure of \[6.68{\text{ }} \times {10^4}N{m^{ - 2}}\] at \[273{\text{ K}}\]. Calculate the value of R in SI units.
A. \[8.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}\]
B. \[9.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}\]
C. \[7.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}\]
D. \[5.36841{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}\]
Answer
561.6k+ views
Hint:First calculate the molarity of cane sugar and then use the formula for the osmotic pressure. Take care of units.
Complete answer:
The volume of the solution is \[1{\text{ }} \times {\text{ }}{10^{ - 3}}{m^3}\] . Convert the unit of the volume into liters.
\[V = 1{\text{ }} \times {\text{ }}{10^{ - 3}}{m^3} \times \dfrac{{1000{\text{ L}}}}{{1{m^3}}} = 1{\text{ L}}\]
The osmotic pressure \[\pi \] is given as \[6.68{\text{ }} \times {10^4}N{m^{ - 2}}\] .
The absolute temperature T is \[273{\text{ K}}\] .
The weight w of cane sugar is \[10{\text{ g}}\]
The molecular weight M.W of cane sugar is 342.
First calculate the concentration C of cane sugar
\[C = \dfrac{w}{{M.W \times V}} = \dfrac{{10{\text{ g}}}}{{342{\text{ g/mol }} \times {\text{ 1 L}}}} = 0.02924M\]
The van't Hoff factor ‘i’ is one as cane sugar is non electrolyte.
Write the expression for the osmotic pressure \[\pi \] of solution
\[\pi = i \times C \times R \times T\]
Substitute values in the above expression and calculate the value of the ideal gas constant R.
\[
\pi = i \times C \times R \times T \\
\Rightarrow 6.68{\text{ }} \times {10^4}N{m^{ - 2}} = 1 \times 0.02924M \times R \times 273{\text{ K}} \\
\Rightarrow R = 8368N{m^{ - 2}}L \\
\Rightarrow R = \;8.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}
\]
The value of R is \[\;8.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}\]
Hence, the correct option is the option A
Note:
You can convert the unit of R from \[8368N{m^{ - 2}}L\] to \[\;8.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}\] by using two relations \[1L = 0.001{m^3}\] and \[1{\text{ J = 1 Nm}}\]
This is as shown below.
\[
R = 8368N{m^{ - 2}}L \times \dfrac{{0.001{m^3}}}{{1L}} \times \dfrac{{{\text{1 J}}}}{{{\text{1 Nm}}}} \\
\Rightarrow R = \;8.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}} \\
\]
Complete answer:
The volume of the solution is \[1{\text{ }} \times {\text{ }}{10^{ - 3}}{m^3}\] . Convert the unit of the volume into liters.
\[V = 1{\text{ }} \times {\text{ }}{10^{ - 3}}{m^3} \times \dfrac{{1000{\text{ L}}}}{{1{m^3}}} = 1{\text{ L}}\]
The osmotic pressure \[\pi \] is given as \[6.68{\text{ }} \times {10^4}N{m^{ - 2}}\] .
The absolute temperature T is \[273{\text{ K}}\] .
The weight w of cane sugar is \[10{\text{ g}}\]
The molecular weight M.W of cane sugar is 342.
First calculate the concentration C of cane sugar
\[C = \dfrac{w}{{M.W \times V}} = \dfrac{{10{\text{ g}}}}{{342{\text{ g/mol }} \times {\text{ 1 L}}}} = 0.02924M\]
The van't Hoff factor ‘i’ is one as cane sugar is non electrolyte.
Write the expression for the osmotic pressure \[\pi \] of solution
\[\pi = i \times C \times R \times T\]
Substitute values in the above expression and calculate the value of the ideal gas constant R.
\[
\pi = i \times C \times R \times T \\
\Rightarrow 6.68{\text{ }} \times {10^4}N{m^{ - 2}} = 1 \times 0.02924M \times R \times 273{\text{ K}} \\
\Rightarrow R = 8368N{m^{ - 2}}L \\
\Rightarrow R = \;8.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}
\]
The value of R is \[\;8.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}\]
Hence, the correct option is the option A
Note:
You can convert the unit of R from \[8368N{m^{ - 2}}L\] to \[\;8.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}\] by using two relations \[1L = 0.001{m^3}\] and \[1{\text{ J = 1 Nm}}\]
This is as shown below.
\[
R = 8368N{m^{ - 2}}L \times \dfrac{{0.001{m^3}}}{{1L}} \times \dfrac{{{\text{1 J}}}}{{{\text{1 Nm}}}} \\
\Rightarrow R = \;8.3684{\text{ J}}{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}} \\
\]
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

The computer jargonwwww stands for Aworld wide web class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

