Answer
Verified
421.5k+ views
Hint: The dissociation constant for the weak acid (like acetic acid) is related to the degree of dissociation and concentration of the solution. However, the relation can be further modified to calculate the hydrogen ion concentration of the aqueous solution of the weak acid whose dissociation constant is known. The relation is as shown below,
$\text{ }\left[ {{\text{H}}^{\text{+}}} \right]\text{ = }\sqrt{c{{\text{K}}_{\text{a}}}}\text{ }$
Where ${{\text{K}}_{\text{a}}}$ dissociation constant, c is the concentration, and $\left[ {{\text{H}}^{\text{+}}} \right]$ is hydrogen ion concentration.
Complete step by step solution:
Acetic acid is a weak acid. Its dissociation constant $\text{ }{{\text{K}}_{\text{a}}}\text{ }$ is determined by the equation which related the dissociation constant $\text{ }{{\text{K}}_{\text{a}}}\text{ }$with the concentration of acetic acid and the degree of dissociation. the equation is as follows,
$\text{ }{{\text{K}}_{\text{a}}}\text{ = c}{{\alpha }^{\text{2}}}\text{ OR }\alpha \text{ = }\sqrt{\dfrac{{{\text{K}}_{\text{a}}}\text{ }}{\text{c}}}\text{ }$ (1)
The above equation can be rewritten in terms of the hydrogen ion concentration. Such that hydrogen ion concentration in the solution is equal to the $\text{ c}\alpha \text{ }$ . Thus the relation is stated as follows,
$\text{ }\left[ {{\text{H}}^{\text{+}}} \right]\text{ = c}\alpha \text{ = c}\sqrt{\dfrac{{{\text{K}}_{\text{a}}}\text{ }}{\text{c}}}\text{ = }\sqrt{c{{\text{K}}_{\text{a}}}}\text{ }$ (2)
Take a negative logarithm of the equation (2) .we have,
$\text{ }-\log \left[ {{\text{H}}^{\text{+}}} \right]\text{ = }-\log \text{ }\sqrt{c{{\text{K}}_{\text{a}}}}\text{ = }\dfrac{1}{2}\left[ -\log \text{ c +}(-\text{ log }{{\text{K}}_{\text{a}}})\text{ } \right]\text{ }$
Since we know that, $\text{ }-\log \left[ {{\text{H}}^{\text{+}}} \right]\text{ = pH }$ and$\text{ }-\text{ log }{{\text{K}}_{\text{a}}}\text{ = p}{{\text{K}}_{\text{a}}}\text{ }$, we have
$\text{ pH = }\dfrac{1}{2}\left[ \text{p}{{\text{K}}_{\text{a}}}-\log \text{ c } \right]\text{ }$ (3)
Let's substitute the values in equation (3). We get,
$\text{ pH = }\dfrac{1}{2}\left[ \text{p}{{\text{K}}_{\text{a}}}-\log \text{ 1 } \right]\text{ = }\dfrac{\text{p}{{\text{K}}_{\text{a}}}}{2}\text{ }$ (4)
We are interested in the value of the concentration when the value of $\text{ pH }$ doubled. We already know the value of $\text{ pH }$in terms of $\text{ p}{{\text{K}}_{\text{a}}}\text{ }$ . Thus to get the twice of $\text{ pH }$multiply the equation (4) by 2.the value of new $\text{pH }\!\!'\!\!\text{ }$ is,
$\text{ pH }\!\!'\!\!\text{ =2}\times \text{pH = 2}\times \dfrac{\text{p}{{\text{K}}_{\text{a}}}}{2}=\text{ p}{{\text{K}}_{\text{a}}}$
Now substitute these values in equation (3), so that we can determine the concentration $\text{ C }\!\!'\!\!\text{ }$ which is a concentration of acetic acid required for the double value of $\text{ pH }$ the solution. We have,
\[\text{ pH }\!\!'\!\!\text{ = p}{{\text{K}}_{\text{a}}}\text{= }\dfrac{1}{2}\left[ \text{p}{{\text{K}}_{\text{a}}}-\log \text{ C }\!\!'\!\!\text{ } \right]\text{ }\]
On further simplifying we have,
$\begin{align}
& \text{ 2p}{{\text{K}}_{\text{a}}}-\text{p}{{\text{K}}_{\text{a}}}\text{= }\left[ -\log \text{ C }\!\!'\!\!\text{ } \right]\text{ } \\
& \Rightarrow \text{p}{{\text{K}}_{\text{a}}}\text{ = }-\log \text{ C }\!\!'\!\!\text{ } \\
& but,\text{ p}{{\text{K}}_{\text{a}}}\text{ = }-\log {{\text{K}}_{\text{a}}} \\
& \Rightarrow \text{ }-\log {{\text{K}}_{\text{a}}}\text{ = }-\log \text{ C }\!\!'\!\!\text{ } \\
& \therefore \text{ }{{\text{K}}_{\text{a}}}\text{ = C }\!\!'\!\!\text{ } \\
\end{align}$
We know that dissociation constant for the acetic acid is $\text{ }{{\text{K}}_{\text{a}}}\text{ = 1}\text{.8 }\times \text{1}{{\text{0}}^{-5}}\text{ }$ , therefore dilution ‘x’ times would be equal to,
$\text{ dilution }\!\!'\!\!\text{ x }\!\!'\!\!\text{ = }\dfrac{1}{C'}\text{ = }\dfrac{1}{1.8\times {{10}^{-5}}}=\text{ 5}\text{.55 }\times \text{1}{{\text{0}}^{\text{4}}}\text{ times }$
Thus to double the $\text{ pH }$ 1 M solution of acetic acid we need to dilute it by the $\text{5}\text{.55 }\times \text{1}{{\text{0}}^{\text{4}}}$ times.
Hence, (B) is the correct option.
Note: The negative logarithm taking a step is essential in the determination of $\text{ pH }$as direct formula cannot be employed to determine the $\text{ pH }$. This will direct us to the hydrogen concentration. The hydroxyl ion concentration of the weak base can also be written in terms of dissociation constant f as follows,$\text{ }\left[ \text{O}{{\text{H}}^{-}} \right]\text{ = }\sqrt{c{{\text{K}}_{\text{b}}}}\text{ }$. where ${{\text{K}}_{\text{b}}}$ is the dissociation constant of a weak base such as ammonium hydroxide.
$\text{ }\left[ {{\text{H}}^{\text{+}}} \right]\text{ = }\sqrt{c{{\text{K}}_{\text{a}}}}\text{ }$
Where ${{\text{K}}_{\text{a}}}$ dissociation constant, c is the concentration, and $\left[ {{\text{H}}^{\text{+}}} \right]$ is hydrogen ion concentration.
Complete step by step solution:
Acetic acid is a weak acid. Its dissociation constant $\text{ }{{\text{K}}_{\text{a}}}\text{ }$ is determined by the equation which related the dissociation constant $\text{ }{{\text{K}}_{\text{a}}}\text{ }$with the concentration of acetic acid and the degree of dissociation. the equation is as follows,
$\text{ }{{\text{K}}_{\text{a}}}\text{ = c}{{\alpha }^{\text{2}}}\text{ OR }\alpha \text{ = }\sqrt{\dfrac{{{\text{K}}_{\text{a}}}\text{ }}{\text{c}}}\text{ }$ (1)
The above equation can be rewritten in terms of the hydrogen ion concentration. Such that hydrogen ion concentration in the solution is equal to the $\text{ c}\alpha \text{ }$ . Thus the relation is stated as follows,
$\text{ }\left[ {{\text{H}}^{\text{+}}} \right]\text{ = c}\alpha \text{ = c}\sqrt{\dfrac{{{\text{K}}_{\text{a}}}\text{ }}{\text{c}}}\text{ = }\sqrt{c{{\text{K}}_{\text{a}}}}\text{ }$ (2)
Take a negative logarithm of the equation (2) .we have,
$\text{ }-\log \left[ {{\text{H}}^{\text{+}}} \right]\text{ = }-\log \text{ }\sqrt{c{{\text{K}}_{\text{a}}}}\text{ = }\dfrac{1}{2}\left[ -\log \text{ c +}(-\text{ log }{{\text{K}}_{\text{a}}})\text{ } \right]\text{ }$
Since we know that, $\text{ }-\log \left[ {{\text{H}}^{\text{+}}} \right]\text{ = pH }$ and$\text{ }-\text{ log }{{\text{K}}_{\text{a}}}\text{ = p}{{\text{K}}_{\text{a}}}\text{ }$, we have
$\text{ pH = }\dfrac{1}{2}\left[ \text{p}{{\text{K}}_{\text{a}}}-\log \text{ c } \right]\text{ }$ (3)
Let's substitute the values in equation (3). We get,
$\text{ pH = }\dfrac{1}{2}\left[ \text{p}{{\text{K}}_{\text{a}}}-\log \text{ 1 } \right]\text{ = }\dfrac{\text{p}{{\text{K}}_{\text{a}}}}{2}\text{ }$ (4)
We are interested in the value of the concentration when the value of $\text{ pH }$ doubled. We already know the value of $\text{ pH }$in terms of $\text{ p}{{\text{K}}_{\text{a}}}\text{ }$ . Thus to get the twice of $\text{ pH }$multiply the equation (4) by 2.the value of new $\text{pH }\!\!'\!\!\text{ }$ is,
$\text{ pH }\!\!'\!\!\text{ =2}\times \text{pH = 2}\times \dfrac{\text{p}{{\text{K}}_{\text{a}}}}{2}=\text{ p}{{\text{K}}_{\text{a}}}$
Now substitute these values in equation (3), so that we can determine the concentration $\text{ C }\!\!'\!\!\text{ }$ which is a concentration of acetic acid required for the double value of $\text{ pH }$ the solution. We have,
\[\text{ pH }\!\!'\!\!\text{ = p}{{\text{K}}_{\text{a}}}\text{= }\dfrac{1}{2}\left[ \text{p}{{\text{K}}_{\text{a}}}-\log \text{ C }\!\!'\!\!\text{ } \right]\text{ }\]
On further simplifying we have,
$\begin{align}
& \text{ 2p}{{\text{K}}_{\text{a}}}-\text{p}{{\text{K}}_{\text{a}}}\text{= }\left[ -\log \text{ C }\!\!'\!\!\text{ } \right]\text{ } \\
& \Rightarrow \text{p}{{\text{K}}_{\text{a}}}\text{ = }-\log \text{ C }\!\!'\!\!\text{ } \\
& but,\text{ p}{{\text{K}}_{\text{a}}}\text{ = }-\log {{\text{K}}_{\text{a}}} \\
& \Rightarrow \text{ }-\log {{\text{K}}_{\text{a}}}\text{ = }-\log \text{ C }\!\!'\!\!\text{ } \\
& \therefore \text{ }{{\text{K}}_{\text{a}}}\text{ = C }\!\!'\!\!\text{ } \\
\end{align}$
We know that dissociation constant for the acetic acid is $\text{ }{{\text{K}}_{\text{a}}}\text{ = 1}\text{.8 }\times \text{1}{{\text{0}}^{-5}}\text{ }$ , therefore dilution ‘x’ times would be equal to,
$\text{ dilution }\!\!'\!\!\text{ x }\!\!'\!\!\text{ = }\dfrac{1}{C'}\text{ = }\dfrac{1}{1.8\times {{10}^{-5}}}=\text{ 5}\text{.55 }\times \text{1}{{\text{0}}^{\text{4}}}\text{ times }$
Thus to double the $\text{ pH }$ 1 M solution of acetic acid we need to dilute it by the $\text{5}\text{.55 }\times \text{1}{{\text{0}}^{\text{4}}}$ times.
Hence, (B) is the correct option.
Note: The negative logarithm taking a step is essential in the determination of $\text{ pH }$as direct formula cannot be employed to determine the $\text{ pH }$. This will direct us to the hydrogen concentration. The hydroxyl ion concentration of the weak base can also be written in terms of dissociation constant f as follows,$\text{ }\left[ \text{O}{{\text{H}}^{-}} \right]\text{ = }\sqrt{c{{\text{K}}_{\text{b}}}}\text{ }$. where ${{\text{K}}_{\text{b}}}$ is the dissociation constant of a weak base such as ammonium hydroxide.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
A group of fish is known as class 7 english CBSE
The highest dam in India is A Bhakra dam B Tehri dam class 10 social science CBSE
Write all prime numbers between 80 and 100 class 8 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Onam is the main festival of which state A Karnataka class 7 social science CBSE
Who administers the oath of office to the President class 10 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Kolkata port is situated on the banks of river A Ganga class 9 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE