
How that $ 1 + i{}^{10} + {i^{20}} + {i^{30}} $ is a real number.
Answer
502.5k+ views
Hint: The real numbers can be defined as the numbers which include natural numbers, whole numbers and integers. Here, we will use the concept of power to power rule and apply the value $ {i^2} = - 1 $ for all the terms in the expression and then simplify for the required value.
Complete step-by-step answer:
Take the given expression: $ 1 + i{}^{10} + {i^{20}} + {i^{30}} $
Now as per the imaginary value place $ {i^2} = ( - 1) $
$ {i^{10}} = {i^{2(5)}} = ( - 1) $ …. (A)
And similarly, $ {i^{20}} = {i^{2(10)}} = ( - 1) \times ( - 1) = 1 $ …. (B)
[Product of two negative terms gives the resultant term in positive]
And similarly use the above value for the next term –
$ {i^{30}} = {i^{3(10)}} = ( - 1) \times ( - 1) \times ( - 1) = ( - 1) $ ….. (C)
Product of three negative terms gives the resultant term in negative by the fact that the product of the first two negative terms gives a positive term and its value multiplied with the third negative term gives a negative term.
Place the values of the equations (A), (B) and (C) in the given expression –
$ 1 + i{}^{10} + {i^{20}} + {i^{30}} $
$ = 1 + ( - 1) + 1 + ( - 1) $
Open the brackets, when there is a positive sign outside the bracket then the sign of the terms inside the bracket remains the same.
$ = 1 - 1 + 1 - 1 $
Terms with the same value and opposite sign cancel each other and therefore the term $ + 1 $ and $ ( - 1) $ cancel each other.
$ = 0 $
The resultant value is included in the set of real numbers and therefore the given expression $ 1 + i{}^{10} + {i^{20}} + {i^{30}} $ is a real number.
Note: Always remember the concepts of the complex numbers which are the combinations of real numbers and the imaginary numbers and since imaginary numbers are very difficult to understand and therefore they are complex numbers. Always remember the value of imaginary “I” and accordingly find the ith power times value. Also, be good in multiples and simplifications of the equation. Remembering the square of the negative terms also gives the positive values.
Complete step-by-step answer:
Take the given expression: $ 1 + i{}^{10} + {i^{20}} + {i^{30}} $
Now as per the imaginary value place $ {i^2} = ( - 1) $
$ {i^{10}} = {i^{2(5)}} = ( - 1) $ …. (A)
And similarly, $ {i^{20}} = {i^{2(10)}} = ( - 1) \times ( - 1) = 1 $ …. (B)
[Product of two negative terms gives the resultant term in positive]
And similarly use the above value for the next term –
$ {i^{30}} = {i^{3(10)}} = ( - 1) \times ( - 1) \times ( - 1) = ( - 1) $ ….. (C)
Product of three negative terms gives the resultant term in negative by the fact that the product of the first two negative terms gives a positive term and its value multiplied with the third negative term gives a negative term.
Place the values of the equations (A), (B) and (C) in the given expression –
$ 1 + i{}^{10} + {i^{20}} + {i^{30}} $
$ = 1 + ( - 1) + 1 + ( - 1) $
Open the brackets, when there is a positive sign outside the bracket then the sign of the terms inside the bracket remains the same.
$ = 1 - 1 + 1 - 1 $
Terms with the same value and opposite sign cancel each other and therefore the term $ + 1 $ and $ ( - 1) $ cancel each other.
$ = 0 $
The resultant value is included in the set of real numbers and therefore the given expression $ 1 + i{}^{10} + {i^{20}} + {i^{30}} $ is a real number.
Note: Always remember the concepts of the complex numbers which are the combinations of real numbers and the imaginary numbers and since imaginary numbers are very difficult to understand and therefore they are complex numbers. Always remember the value of imaginary “I” and accordingly find the ith power times value. Also, be good in multiples and simplifications of the equation. Remembering the square of the negative terms also gives the positive values.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

