
Write the value of ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)$ .
Answer
509.1k+ views
Hint: For solving this question first, we will go through some important aspects like domain and range of the inverse trigonometric function $y={{\cos }^{-1}}x$ . First, we will use one of the basic formula of the trigonometric ratio to write $\cos \dfrac{7\pi }{6}=-\dfrac{\sqrt{3}}{2}$ in the given term. After that, we will use one of the basic formula of inverse trigonometric functions, i.e. ${{\cos }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right)=\dfrac{5\pi }{6}$ for giving the final answer for the question correctly.
Complete step-by-step solution -
Given:
We have to find the value of the following term:
${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)$
Now, before we proceed we should know about the inverse trigonometric function $y={{\cos }^{-1}}x$ . For more clarity look at the figure given below:
In the above figure, the plot $y=f\left( x \right)={{\cos }^{-1}}x$ is shown. And we should know that the function $y={{\cos }^{-1}}x$ is defined for $x\in \left[ -1,1 \right]$ and its range is $y\in \left[ 0,\pi \right]$ then, $y$ is the principal value of ${{\cos }^{-1}}x$ .
Now, we will use the above concept for giving the correct value of ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)$ .
Now, before we proceed further we should know the following formulas:
$\begin{align}
& \cos \dfrac{7\pi }{6}=\cos \left( \pi +\dfrac{\pi }{6} \right)=-\cos \dfrac{\pi }{6}=-\dfrac{\sqrt{3}}{2}..................\left( 1 \right) \\
& {{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)=\dfrac{\pi }{6}...........\left( 2 \right) \\
& {{\cos }^{-1}}\left( -x \right)=\pi -{{\cos }^{-1}}x\text{ }\left( \text{if 0}\le \text{x}\le \text{1} \right)..............\left( 3 \right) \\
\end{align}$
Now, we will use the above two formulas to solve this question.
We have, ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)$ .
Now, we will use the formula from the equation (1) to write $\cos \dfrac{7\pi }{6}=-\dfrac{\sqrt{3}}{2}$ in the term ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)$ . Then,
$\begin{align}
& {{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right) \\
& \Rightarrow {{\cos }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right) \\
\end{align}$
Now, as $0<\dfrac{\sqrt{3}}{2}<1$ so, we will use the formula from the equation (3) to write ${{\cos }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right)=\pi -{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)$ in the above line. Then,
$\begin{align}
& {{\cos }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right) \\
& \Rightarrow \pi -{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right) \\
\end{align}$
Now, we will use the formula from the equation (2) to write ${{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)=\dfrac{\pi }{6}$ in the above equation. Then,
$\begin{align}
& \pi -{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right) \\
& \Rightarrow \pi -\dfrac{\pi }{6} \\
& \Rightarrow \dfrac{5\pi }{6} \\
\end{align}$
Now, from the above result, we conclude that the value of the expression ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)$ will be equal to $\dfrac{5\pi }{6}$ . Then,
${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)=\dfrac{5\pi }{6}$
Now, as it is evident that $\dfrac{5\pi }{6}$ lies in the range of the function $y={{\cos }^{-1}}x$ so, value of ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)=\dfrac{5\pi }{6}$ .
Thus, ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)=\dfrac{5\pi }{6}$ .
Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to get the correct answer quickly. And we should avoid writing ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)=\dfrac{7\pi }{6}$ directly and use the basic concepts of domain and range of the inverse trigonometric function $y={{\cos }^{-1}}x$ correctly. Moreover, as we know that, $\cos \dfrac{5\pi }{6}=-\dfrac{\sqrt{3}}{2}$ and $0<\dfrac{5\pi }{6}<\pi $ so, we can directly write ${{\cos }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right)=\dfrac{5\pi }{6}$ by the formula ${{\cos }^{-1}}\left( \cos \theta \right)=\theta $ if $\theta \in \left[ 0,\pi \right]$ . And after giving the final answer, we should check for the validity of our answer by checking whether it lies in the range of the function $y={{\cos }^{-1}}x$.
Complete step-by-step solution -
Given:
We have to find the value of the following term:
${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)$
Now, before we proceed we should know about the inverse trigonometric function $y={{\cos }^{-1}}x$ . For more clarity look at the figure given below:

In the above figure, the plot $y=f\left( x \right)={{\cos }^{-1}}x$ is shown. And we should know that the function $y={{\cos }^{-1}}x$ is defined for $x\in \left[ -1,1 \right]$ and its range is $y\in \left[ 0,\pi \right]$ then, $y$ is the principal value of ${{\cos }^{-1}}x$ .
Now, we will use the above concept for giving the correct value of ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)$ .
Now, before we proceed further we should know the following formulas:
$\begin{align}
& \cos \dfrac{7\pi }{6}=\cos \left( \pi +\dfrac{\pi }{6} \right)=-\cos \dfrac{\pi }{6}=-\dfrac{\sqrt{3}}{2}..................\left( 1 \right) \\
& {{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)=\dfrac{\pi }{6}...........\left( 2 \right) \\
& {{\cos }^{-1}}\left( -x \right)=\pi -{{\cos }^{-1}}x\text{ }\left( \text{if 0}\le \text{x}\le \text{1} \right)..............\left( 3 \right) \\
\end{align}$
Now, we will use the above two formulas to solve this question.
We have, ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)$ .
Now, we will use the formula from the equation (1) to write $\cos \dfrac{7\pi }{6}=-\dfrac{\sqrt{3}}{2}$ in the term ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)$ . Then,
$\begin{align}
& {{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right) \\
& \Rightarrow {{\cos }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right) \\
\end{align}$
Now, as $0<\dfrac{\sqrt{3}}{2}<1$ so, we will use the formula from the equation (3) to write ${{\cos }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right)=\pi -{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)$ in the above line. Then,
$\begin{align}
& {{\cos }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right) \\
& \Rightarrow \pi -{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right) \\
\end{align}$
Now, we will use the formula from the equation (2) to write ${{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right)=\dfrac{\pi }{6}$ in the above equation. Then,
$\begin{align}
& \pi -{{\cos }^{-1}}\left( \dfrac{\sqrt{3}}{2} \right) \\
& \Rightarrow \pi -\dfrac{\pi }{6} \\
& \Rightarrow \dfrac{5\pi }{6} \\
\end{align}$
Now, from the above result, we conclude that the value of the expression ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)$ will be equal to $\dfrac{5\pi }{6}$ . Then,
${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)=\dfrac{5\pi }{6}$
Now, as it is evident that $\dfrac{5\pi }{6}$ lies in the range of the function $y={{\cos }^{-1}}x$ so, value of ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)=\dfrac{5\pi }{6}$ .
Thus, ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)=\dfrac{5\pi }{6}$ .
Note: Here, the student should first understand what is asked in the question and then proceed in the right direction to get the correct answer quickly. And we should avoid writing ${{\cos }^{-1}}\left( \cos \dfrac{7\pi }{6} \right)=\dfrac{7\pi }{6}$ directly and use the basic concepts of domain and range of the inverse trigonometric function $y={{\cos }^{-1}}x$ correctly. Moreover, as we know that, $\cos \dfrac{5\pi }{6}=-\dfrac{\sqrt{3}}{2}$ and $0<\dfrac{5\pi }{6}<\pi $ so, we can directly write ${{\cos }^{-1}}\left( -\dfrac{\sqrt{3}}{2} \right)=\dfrac{5\pi }{6}$ by the formula ${{\cos }^{-1}}\left( \cos \theta \right)=\theta $ if $\theta \in \left[ 0,\pi \right]$ . And after giving the final answer, we should check for the validity of our answer by checking whether it lies in the range of the function $y={{\cos }^{-1}}x$.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Trending doubts
Give simple chemical tests to distinguish between the class 12 chemistry CBSE

India is the secondlargest producer of AJute Bcotton class 12 biology CBSE

Define peptide linkage class 12 chemistry CBSE

How is democracy better than other forms of government class 12 social science CBSE

Differentiate between lanthanoids and actinoids class 12 chemistry CBSE

Phenol on treatment with conc HNO3 gives A Picric acid class 12 chemistry CBSE
