
Write the relation between focal length and radius of curvature of a spherical mirror.
Answer
517.6k+ views
Hint: Before stating the relation, derive the relation between radius of curvature and the focal length of a mirror. This will help you understand better. Use the fact that when a parallel ray of light falls on a concave mirror, it passes through the focus of the mirror after reflection.
Complete step by step answer:
The relation between focal length (f) and radius of curvature (R) of a spherical mirror is that the focal length is equal to half of the radius of curvature i.e. $f=\dfrac{R}{2}$.
Let us derive this relation.
Consider a concave mirror such that its radius of curvature is very much larger than the diameter of its aperture.
We can take help from the figure given.
Suppose a parallel ray of light is incident on the mirror as shown in the figure. Let this incident ray make an angle $\theta $ with normal to the surface of the mirror. Since this mirror is part of a circle, the normal drawn to the surface of the circle passes through the centre (C) of the mirror.
We know that rays of light parallel to the principal axis passing through the focus (F) of a concave mirror, after reflection.
According to the law of reflections, the angle of incidence and angle of reflection are equal. Therefore, $\angle BAC=\angle FAC=\theta $ as shown in the given figure.
Since BA and PC are parallel, $\angle BAC=\angle ACF=\theta $.
Therefore, from exterior angle theorem $\angle AFN=\angle ACF+\angle CAF=2\theta $.
Now drop a normal CP from point A. Let the foot of this normal be N.
Here, $\tan \theta =\dfrac{AN}{CN}\Rightarrow AN=CN\tan \theta $ ……. (i).
$\tan 2\theta =\dfrac{AN}{FN}\Rightarrow AN=FN\tan 2\theta $ ….. (ii).
From equation (i) and equation (ii) we get,
$CN\tan \theta =FN\tan 2\theta $
$\Rightarrow \dfrac{CN}{FN}=\dfrac{\tan 2\theta }{\tan \theta }$ …… (iii).
Since the radius of curvature is very much larger than the diameter of its aperture, NP is very small compared to CN and CP and $\theta $ will be a small angle .
Therefore, $CN\approx CP$ and $FN\approx FP$.
For small angles $\tan \theta =\theta $ and $\tan 2\theta =2\theta $.
Therefore, equation (iii) can be written as
$\Rightarrow \dfrac{CP}{FP}=\dfrac{2\theta }{\theta }\Rightarrow FP=\dfrac{CP}{2}$
And CP=R and FP=f.
Hence, $f=\dfrac{R}{2}$
Note: Note that this relation between the radius of curvature (R) of a concave mirror and the focal length (f) of the mirror, which is $f=\dfrac{R}{2}$, is true only when the R is very much larger than the diameter of its aperture.
Complete step by step answer:
The relation between focal length (f) and radius of curvature (R) of a spherical mirror is that the focal length is equal to half of the radius of curvature i.e. $f=\dfrac{R}{2}$.
Let us derive this relation.
Consider a concave mirror such that its radius of curvature is very much larger than the diameter of its aperture.
We can take help from the figure given.
Suppose a parallel ray of light is incident on the mirror as shown in the figure. Let this incident ray make an angle $\theta $ with normal to the surface of the mirror. Since this mirror is part of a circle, the normal drawn to the surface of the circle passes through the centre (C) of the mirror.
We know that rays of light parallel to the principal axis passing through the focus (F) of a concave mirror, after reflection.
According to the law of reflections, the angle of incidence and angle of reflection are equal. Therefore, $\angle BAC=\angle FAC=\theta $ as shown in the given figure.
Since BA and PC are parallel, $\angle BAC=\angle ACF=\theta $.
Therefore, from exterior angle theorem $\angle AFN=\angle ACF+\angle CAF=2\theta $.
Now drop a normal CP from point A. Let the foot of this normal be N.
Here, $\tan \theta =\dfrac{AN}{CN}\Rightarrow AN=CN\tan \theta $ ……. (i).
$\tan 2\theta =\dfrac{AN}{FN}\Rightarrow AN=FN\tan 2\theta $ ….. (ii).
From equation (i) and equation (ii) we get,
$CN\tan \theta =FN\tan 2\theta $
$\Rightarrow \dfrac{CN}{FN}=\dfrac{\tan 2\theta }{\tan \theta }$ …… (iii).
Since the radius of curvature is very much larger than the diameter of its aperture, NP is very small compared to CN and CP and $\theta $ will be a small angle .
Therefore, $CN\approx CP$ and $FN\approx FP$.
For small angles $\tan \theta =\theta $ and $\tan 2\theta =2\theta $.
Therefore, equation (iii) can be written as
$\Rightarrow \dfrac{CP}{FP}=\dfrac{2\theta }{\theta }\Rightarrow FP=\dfrac{CP}{2}$
And CP=R and FP=f.
Hence, $f=\dfrac{R}{2}$
Note: Note that this relation between the radius of curvature (R) of a concave mirror and the focal length (f) of the mirror, which is $f=\dfrac{R}{2}$, is true only when the R is very much larger than the diameter of its aperture.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Give 10 examples of unisexual and bisexual flowers

