
Write the formula of the angle of minimum deviation produced by a thin prism.
Answer
512.7k+ views
Hint: Start by using the equation of prism \[\mu = \dfrac{{\sin \left[ {\dfrac{{(A + D)}}{2}} \right]}}{{\sin \dfrac{A}{2}}}\] . Since the angles are small \[\sin \left( {\dfrac{{A + D}}{2}} \right) = \dfrac{{A + D}}{2}\] and \[\sin \left( {\dfrac{A}{2}} \right) = \dfrac{A}{2}\] the equation now becomes \[D = A\left( {\mu - 1} \right)\] . Then use the snell’s law \[\mu = \dfrac{{\sin i}}{{\sin {r_1}}}\] and since angles are small \[\sin i = i\] , \[\sin {r_1} = {r_1}\] , \[\sin {r_2} = {r_2}\] and \[\sin e = e\] . Use these values to obtain the equation \[u \approx \dfrac{i}{{{r_1}}}\] and \[\mu \approx \dfrac{e}{{{r_2}}}\] . Then use simple geometry to obtain the equation \[(i + e) - \left( {{r_1} + {r_2}} \right) = \angle D\] . Then put the value \[{r_1} + {r_2} = \angle A\] in the previous equation to reach the solution.
Complete answer:
The angle of deviation is the angle that the emerging ray coming out of a prism makes with the incident ray coming in the prism (indicated as angle D in the diagram below). This angle of deviation decreases with an increase in the angle of incidence, but only up to a minimum angle called the angle of minimum deviation (indicated by \[{D_m}\] ).
The refractive index of the material of the prism is calculated by using the following formula
\[\mu = \dfrac{{\sin \left[ {\dfrac{{(A + D)}}{2}} \right]}}{{\sin \dfrac{A}{2}}}\] (Equation 1)
\[\mu = \] The refractive index of the material of the prism
\[A = \] The angle of the prism
\[D = \] Angle of deviation
For thin prisms or small angle prisms, as the angles become very small, the sine of the angle nearly equals the angle itself, i.e. \[\sin \left( {\dfrac{{A + D}}{2}} \right) = \dfrac{{A + D}}{2}\] and \[\sin \left( {\dfrac{A}{2}} \right) = \dfrac{A}{2}\] .
Putting these values in equation 1, we get
\[\mu \approx \dfrac{{\left( {\dfrac{{A + D}}{2}} \right)}}{{\left( {\dfrac{A}{2}} \right)}}\]
\[\mu = \dfrac{{A + D}}{A}\]
\[\mu A = A + D\]
\[D = A\left( {\mu - 1} \right)\]
Now, for the angle of minimum deviation this equation becomes
\[{D_m} = A\left( {\mu - 1} \right)\]
We know by Snell’s law for the incident ray
\[\mu = \dfrac{{\sin i}}{{\sin {r_1}}}\]
Since the angles are small, so \[\sin i = i\] and \[\sin {r_1} = {r_1}\] .
So, \[u \approx \dfrac{i}{{{r_1}}}\]
We know by Snell’s law for the emergent ray
\[\dfrac{1}{\mu } = \dfrac{{\sin {r_2}}}{{\sin e}}\]
\[\mu = \dfrac{{\sin e}}{{\sin {r_2}}}\]
Since the angles are small, so \[\sin e = e\] and \[\sin {r_2} = {r_2}\] .
So, \[\mu \approx \dfrac{e}{{{r_2}}}\]
We know,
\[\angle AMB = \angle OMP = i\] (Vertically opposite Angles)
\[\angle CND = \angle PNO = e\] (Vertically opposite angles)
In \[\Delta OMN\] ,
\[\angle OMN + \angle MNO = \angle QON\] ( \[\angle QON\] is an external angle to the triangle \[\Delta OMN\] )
\[(\angle OMP - \angle NMP) + (\angle PNO - \angle MNP) = \angle QON\]
\[i - {r_1} + e - {r_2} = \angle D\]
\[(i + e) - \left( {{r_1} + {r_2}} \right) = \angle D\] (Equation 1)
In \[\Delta PMN\] the sum of all the angles is \[180^\circ \]
\[\angle OMN + \angle MNO + \angle MPN = 180^\circ \]
\[(90^\circ - \angle NMP) + \left( {90^\circ - \angle MNP} \right) + \angle A = 180^\circ \]
\[\left( {90^\circ - {r_1}} \right) + \left( {90^\circ - {r_2}} \right) + \angle A = 180\]
\[{r_1} + {r_2} = \angle A\]
Substituting this value in equation 1, we get
\[\left( {i + e} \right) - \left( {\angle A} \right) = \angle D\]
For, the angle of minimum deviation, \[i = e\] , so equation 2 becomes
\[2i - \angle A = \angle {D_{\min }}\]
\[i = \dfrac{{A + {D_{\min }}}}{2}\]
Note:
The prism is optical equipment that is used to observe the dispersion of white light. The prism makes use of the fact that light travels with different speeds in different mediums. The prism is normally made out of glass, the edges of the prism should be perfect during the manufacturing of the glass prisms.
Complete answer:
The angle of deviation is the angle that the emerging ray coming out of a prism makes with the incident ray coming in the prism (indicated as angle D in the diagram below). This angle of deviation decreases with an increase in the angle of incidence, but only up to a minimum angle called the angle of minimum deviation (indicated by \[{D_m}\] ).
The refractive index of the material of the prism is calculated by using the following formula
\[\mu = \dfrac{{\sin \left[ {\dfrac{{(A + D)}}{2}} \right]}}{{\sin \dfrac{A}{2}}}\] (Equation 1)
\[\mu = \] The refractive index of the material of the prism
\[A = \] The angle of the prism
\[D = \] Angle of deviation
For thin prisms or small angle prisms, as the angles become very small, the sine of the angle nearly equals the angle itself, i.e. \[\sin \left( {\dfrac{{A + D}}{2}} \right) = \dfrac{{A + D}}{2}\] and \[\sin \left( {\dfrac{A}{2}} \right) = \dfrac{A}{2}\] .
Putting these values in equation 1, we get
\[\mu \approx \dfrac{{\left( {\dfrac{{A + D}}{2}} \right)}}{{\left( {\dfrac{A}{2}} \right)}}\]
\[\mu = \dfrac{{A + D}}{A}\]
\[\mu A = A + D\]
\[D = A\left( {\mu - 1} \right)\]
Now, for the angle of minimum deviation this equation becomes
\[{D_m} = A\left( {\mu - 1} \right)\]
We know by Snell’s law for the incident ray
\[\mu = \dfrac{{\sin i}}{{\sin {r_1}}}\]
Since the angles are small, so \[\sin i = i\] and \[\sin {r_1} = {r_1}\] .
So, \[u \approx \dfrac{i}{{{r_1}}}\]
We know by Snell’s law for the emergent ray
\[\dfrac{1}{\mu } = \dfrac{{\sin {r_2}}}{{\sin e}}\]
\[\mu = \dfrac{{\sin e}}{{\sin {r_2}}}\]
Since the angles are small, so \[\sin e = e\] and \[\sin {r_2} = {r_2}\] .
So, \[\mu \approx \dfrac{e}{{{r_2}}}\]
We know,
\[\angle AMB = \angle OMP = i\] (Vertically opposite Angles)
\[\angle CND = \angle PNO = e\] (Vertically opposite angles)
In \[\Delta OMN\] ,
\[\angle OMN + \angle MNO = \angle QON\] ( \[\angle QON\] is an external angle to the triangle \[\Delta OMN\] )
\[(\angle OMP - \angle NMP) + (\angle PNO - \angle MNP) = \angle QON\]
\[i - {r_1} + e - {r_2} = \angle D\]
\[(i + e) - \left( {{r_1} + {r_2}} \right) = \angle D\] (Equation 1)
In \[\Delta PMN\] the sum of all the angles is \[180^\circ \]
\[\angle OMN + \angle MNO + \angle MPN = 180^\circ \]
\[(90^\circ - \angle NMP) + \left( {90^\circ - \angle MNP} \right) + \angle A = 180^\circ \]
\[\left( {90^\circ - {r_1}} \right) + \left( {90^\circ - {r_2}} \right) + \angle A = 180\]
\[{r_1} + {r_2} = \angle A\]
Substituting this value in equation 1, we get
\[\left( {i + e} \right) - \left( {\angle A} \right) = \angle D\]
For, the angle of minimum deviation, \[i = e\] , so equation 2 becomes
\[2i - \angle A = \angle {D_{\min }}\]
\[i = \dfrac{{A + {D_{\min }}}}{2}\]
Note:
The prism is optical equipment that is used to observe the dispersion of white light. The prism makes use of the fact that light travels with different speeds in different mediums. The prism is normally made out of glass, the edges of the prism should be perfect during the manufacturing of the glass prisms.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Give 10 examples of unisexual and bisexual flowers

