
Write the direction cosines of the normal to plane $3x+4y+12z=52$.
Answer
571.2k+ views
Hint: We can write the equation of the plane which Is normal to $ax+by+cz=d$ as $\bar{r}.\bar{n}=d$ where $\bar{n}=a\hat{i}+b\hat{j}+c\hat{k}$. Now the direction cosines of the normal plane can be calculated by calculating the unit vector of $\bar{n}$. The direction cosines are equal to the coefficient of the unit vector $\hat{n}$.
Complete step by step answer:
Given plane, $3x+4y+12z=52$
Comparing it with $ax+by+cz=d$ then $a=3$, $b=4$, $c=12$.
Let the equation of the plane which is normal to $3x+4y+12z=52$ can be calculated by
$\bar{r}.\bar{n}=d$ where $\bar{n}=a\hat{i}+b\hat{j}+c\hat{k}$. Substituting the values of $a$, $b$, $c$ in the above equation, then we will get the equation of the plane as $\Rightarrow \bar{r}.\left( 3\hat{i}+4\hat{j}+12\hat{k} \right)=52$ and $\bar{n}=3\hat{i}+4\hat{j}+12\hat{k}$
Now the magnitude the vector $\bar{n}$ is
$\begin{align}
& \left| {\bar{n}} \right|=\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}} \\
& \Rightarrow \left| {\bar{n}} \right|=\sqrt{{{3}^{2}}+{{4}^{2}}+{{12}^{2}}} \\
& \Rightarrow \left| {\bar{n}} \right|=\sqrt{9+16+144} \\
& \Rightarrow \left| {\bar{n}} \right|=\sqrt{169} \\
& \Rightarrow \left| {\bar{n}} \right|=13 \\
\end{align}$
Now the unit vector of the vector $\bar{n}$ is given by
$\begin{align}
& \hat{n}=\dfrac{{\bar{n}}}{\left| {\bar{n}} \right|} \\
& \Rightarrow \hat{n}=\dfrac{\left( 3\hat{i}+4\hat{j}+12\hat{k} \right)}{13} \\
& \Rightarrow \hat{n}=\left( \dfrac{3}{13} \right)\hat{i}+\left( \dfrac{4}{13} \right)\hat{j}+\left( \dfrac{12}{13} \right)\hat{k} \\
\end{align}$
Now the coefficients of the unit vector $\hat{n}$ are $\left( \dfrac{3}{13},\dfrac{4}{13},\dfrac{12}{13} \right)$
$\therefore $The direction cosines are $\left( \dfrac{3}{13},\dfrac{4}{13},\dfrac{12}{13} \right)$.
Note: We will also solve this problem in another method. In this method we will divide the equation of the plane $ax+by+cz=d$ with $\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}$, then the equation of the plane converts into form $lx+my+nz=p$. Now the values of direction cosines are $\left( l,m,n \right)$.
Given plane, $3x+4y+12z=52$
Comparing it with $ax+by+cz=d$ then $a=3$, $b=4$, $c=12$.
Dividing the plane equation with $\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=\sqrt{{{3}^{2}}+{{4}^{2}}+{{12}^{2}}}=13$, then we will get
$\begin{align}
& \dfrac{3x+4y+12z}{13}=\dfrac{52}{13} \\
& \Rightarrow \left( \dfrac{3}{13} \right)x+\left( \dfrac{4}{13} \right)y+\left( \dfrac{12}{13} \right)z=4 \\
\end{align}$
Comparing the above equation with $lx+my+nz=p$, then the values of $l$,$m$,$n$ are
$l=\dfrac{3}{13}$, $m=\dfrac{4}{13}$, $n=\dfrac{12}{13}$.
$\therefore $ The direction cosines are $\left( l,m,n \right)=\left( \dfrac{3}{13},\dfrac{4}{13},\dfrac{12}{13} \right)$
From both the methods we got the same result.
Complete step by step answer:
Given plane, $3x+4y+12z=52$
Comparing it with $ax+by+cz=d$ then $a=3$, $b=4$, $c=12$.
Let the equation of the plane which is normal to $3x+4y+12z=52$ can be calculated by
$\bar{r}.\bar{n}=d$ where $\bar{n}=a\hat{i}+b\hat{j}+c\hat{k}$. Substituting the values of $a$, $b$, $c$ in the above equation, then we will get the equation of the plane as $\Rightarrow \bar{r}.\left( 3\hat{i}+4\hat{j}+12\hat{k} \right)=52$ and $\bar{n}=3\hat{i}+4\hat{j}+12\hat{k}$
Now the magnitude the vector $\bar{n}$ is
$\begin{align}
& \left| {\bar{n}} \right|=\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}} \\
& \Rightarrow \left| {\bar{n}} \right|=\sqrt{{{3}^{2}}+{{4}^{2}}+{{12}^{2}}} \\
& \Rightarrow \left| {\bar{n}} \right|=\sqrt{9+16+144} \\
& \Rightarrow \left| {\bar{n}} \right|=\sqrt{169} \\
& \Rightarrow \left| {\bar{n}} \right|=13 \\
\end{align}$
Now the unit vector of the vector $\bar{n}$ is given by
$\begin{align}
& \hat{n}=\dfrac{{\bar{n}}}{\left| {\bar{n}} \right|} \\
& \Rightarrow \hat{n}=\dfrac{\left( 3\hat{i}+4\hat{j}+12\hat{k} \right)}{13} \\
& \Rightarrow \hat{n}=\left( \dfrac{3}{13} \right)\hat{i}+\left( \dfrac{4}{13} \right)\hat{j}+\left( \dfrac{12}{13} \right)\hat{k} \\
\end{align}$
Now the coefficients of the unit vector $\hat{n}$ are $\left( \dfrac{3}{13},\dfrac{4}{13},\dfrac{12}{13} \right)$
$\therefore $The direction cosines are $\left( \dfrac{3}{13},\dfrac{4}{13},\dfrac{12}{13} \right)$.
Note: We will also solve this problem in another method. In this method we will divide the equation of the plane $ax+by+cz=d$ with $\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}$, then the equation of the plane converts into form $lx+my+nz=p$. Now the values of direction cosines are $\left( l,m,n \right)$.
Given plane, $3x+4y+12z=52$
Comparing it with $ax+by+cz=d$ then $a=3$, $b=4$, $c=12$.
Dividing the plane equation with $\sqrt{{{a}^{2}}+{{b}^{2}}+{{c}^{2}}}=\sqrt{{{3}^{2}}+{{4}^{2}}+{{12}^{2}}}=13$, then we will get
$\begin{align}
& \dfrac{3x+4y+12z}{13}=\dfrac{52}{13} \\
& \Rightarrow \left( \dfrac{3}{13} \right)x+\left( \dfrac{4}{13} \right)y+\left( \dfrac{12}{13} \right)z=4 \\
\end{align}$
Comparing the above equation with $lx+my+nz=p$, then the values of $l$,$m$,$n$ are
$l=\dfrac{3}{13}$, $m=\dfrac{4}{13}$, $n=\dfrac{12}{13}$.
$\therefore $ The direction cosines are $\left( l,m,n \right)=\left( \dfrac{3}{13},\dfrac{4}{13},\dfrac{12}{13} \right)$
From both the methods we got the same result.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Why cannot DNA pass through cell membranes class 12 biology CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

