Answer
Verified
408k+ views
Hint:In the given question, we have been asked to find the probability of at least 7. In order to solve the question, we first need to know about the formula of binomial distribution i.e. \[P\left( n,r
\right)=\dfrac{n!}{r!\left( n-r \right)!}\times {{p}^{r}}\times {{\left( 1-p \right)}^{n-r}}\], where n represent the number of trials and the r represents the probability of success of an event.
Complete step by step solution:
\[\Rightarrow \]If the probability of success of an event = p
Then, probability of failure of an event = 1-p
\[\Rightarrow \]The probability of ‘r’ successes out of total trial event i.e. ‘n’
Thus, \[P\left( n,r \right)=\dfrac{n!}{r!\left( n-r \right)!}\times {{p}^{r}}\times {{\left( 1-p \right)}^{n-r}}\]
We have given that,
n = 13, p = 4
Here, P (at least 7) means success of 7 or more,
Hence, desired probability = P (\[r\ge 7\])
Therefore,
\[\Rightarrow P\left( r\ge 7 \right)=P\left( 7,13 \right)+P\left( 8,13 \right)+P\left( 9,13 \right)+P\left(
10,13 \right)+P\left( 11,13 \right)+P\left( 12,13 \right)+P\left( 13,13 \right)\]
As, we know that
\[\Rightarrow P\left( n,r \right)=\dfrac{n!}{r!\left( n-r \right)!}\times {{p}^{r}}\times {{\left( 1-p
\right)}^{n-r}}\]
Putting this formula, we get
\[\Rightarrow P\left( r\ge 7 \right)=\left( \dfrac{13!}{7!6!}\times {{\left( 0.4 \right)}^{7}}\times {{\left(
0.7 \right)}^{6}} \right)+\left( \dfrac{13!}{8!5!}\times {{\left( 0.4 \right)}^{8}}\times {{\left( 0.7
\right)}^{5}} \right)+\left( \dfrac{13!}{9!4!}\times {{\left( 0.4 \right)}^{9}}\times {{\left( 0.7 \right)}^{4}}
\right)+\]
\[\left( \dfrac{13!}{10!3!}\times {{\left( 0.4 \right)}^{10}}\times {{\left( 0.7 \right)}^{3}} \right)+\left(
\dfrac{13!}{11!2!}\times {{\left( 0.4 \right)}^{11}}\times {{\left( 0.7 \right)}^{2}} \right)+\left(
\dfrac{13!}{12!1!}\times {{\left( 0.4 \right)}^{12}}\times {{\left( 0.7 \right)}^{1}} \right)+\left(
\dfrac{13!}{13!0!}\times {{\left( 0.4 \right)}^{13}}\times {{\left( 0.7 \right)}^{0}} \right)\]
On simplifying, we get
\[\Rightarrow P\left( r\ge 7 \right)=0.13117+0.06559+0.02429+0.00648+0.00118+0.00013+0.00001\]
Adding all the numbers, we get
\[\Rightarrow P\left( r\ge 7 \right)=0.22885\]
\[\therefore P\left( atleast\ 7 \right)=0.2285\]
Formula used:
\[\Rightarrow \]If the probability of success of an event = p
Then, probability of failure of an event = 1-p
\[\Rightarrow \]The probability of ‘r’ successes out of total trial event i.e. ‘n’
Thus, \[P\left( n,r \right)=\dfrac{n!}{r!\left( n-r \right)!}\times {{p}^{r}}\times {{\left( 1-p \right)}^{n-r}}\]
Note:
While solving this question, we need to always remember that the sum of the probabilities of the success of an event and the failure of an event always equals to 1. i.e.
\[\Rightarrow \]If the probability of success of an event = p
Then, probability of failure of an event = 1-p.
Students should always remember that 0! It always equals 1 while solving the answer. We should always read the question carefully.
\right)=\dfrac{n!}{r!\left( n-r \right)!}\times {{p}^{r}}\times {{\left( 1-p \right)}^{n-r}}\], where n represent the number of trials and the r represents the probability of success of an event.
Complete step by step solution:
\[\Rightarrow \]If the probability of success of an event = p
Then, probability of failure of an event = 1-p
\[\Rightarrow \]The probability of ‘r’ successes out of total trial event i.e. ‘n’
Thus, \[P\left( n,r \right)=\dfrac{n!}{r!\left( n-r \right)!}\times {{p}^{r}}\times {{\left( 1-p \right)}^{n-r}}\]
We have given that,
n = 13, p = 4
Here, P (at least 7) means success of 7 or more,
Hence, desired probability = P (\[r\ge 7\])
Therefore,
\[\Rightarrow P\left( r\ge 7 \right)=P\left( 7,13 \right)+P\left( 8,13 \right)+P\left( 9,13 \right)+P\left(
10,13 \right)+P\left( 11,13 \right)+P\left( 12,13 \right)+P\left( 13,13 \right)\]
As, we know that
\[\Rightarrow P\left( n,r \right)=\dfrac{n!}{r!\left( n-r \right)!}\times {{p}^{r}}\times {{\left( 1-p
\right)}^{n-r}}\]
Putting this formula, we get
\[\Rightarrow P\left( r\ge 7 \right)=\left( \dfrac{13!}{7!6!}\times {{\left( 0.4 \right)}^{7}}\times {{\left(
0.7 \right)}^{6}} \right)+\left( \dfrac{13!}{8!5!}\times {{\left( 0.4 \right)}^{8}}\times {{\left( 0.7
\right)}^{5}} \right)+\left( \dfrac{13!}{9!4!}\times {{\left( 0.4 \right)}^{9}}\times {{\left( 0.7 \right)}^{4}}
\right)+\]
\[\left( \dfrac{13!}{10!3!}\times {{\left( 0.4 \right)}^{10}}\times {{\left( 0.7 \right)}^{3}} \right)+\left(
\dfrac{13!}{11!2!}\times {{\left( 0.4 \right)}^{11}}\times {{\left( 0.7 \right)}^{2}} \right)+\left(
\dfrac{13!}{12!1!}\times {{\left( 0.4 \right)}^{12}}\times {{\left( 0.7 \right)}^{1}} \right)+\left(
\dfrac{13!}{13!0!}\times {{\left( 0.4 \right)}^{13}}\times {{\left( 0.7 \right)}^{0}} \right)\]
On simplifying, we get
\[\Rightarrow P\left( r\ge 7 \right)=0.13117+0.06559+0.02429+0.00648+0.00118+0.00013+0.00001\]
Adding all the numbers, we get
\[\Rightarrow P\left( r\ge 7 \right)=0.22885\]
\[\therefore P\left( atleast\ 7 \right)=0.2285\]
Formula used:
\[\Rightarrow \]If the probability of success of an event = p
Then, probability of failure of an event = 1-p
\[\Rightarrow \]The probability of ‘r’ successes out of total trial event i.e. ‘n’
Thus, \[P\left( n,r \right)=\dfrac{n!}{r!\left( n-r \right)!}\times {{p}^{r}}\times {{\left( 1-p \right)}^{n-r}}\]
Note:
While solving this question, we need to always remember that the sum of the probabilities of the success of an event and the failure of an event always equals to 1. i.e.
\[\Rightarrow \]If the probability of success of an event = p
Then, probability of failure of an event = 1-p.
Students should always remember that 0! It always equals 1 while solving the answer. We should always read the question carefully.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths