
Number of all subshell of $(n + l) = 7$ is
A. $4$
B. $5$
C. $6$
D. $7$
Answer
557.4k+ views
Hint:We know that subshells are the group of an orbital so there exists $4$ subshells which are $s,p,d$ and $f$ subshells. Here $n$ is the Principle quantum number and $l$ is the Azimuthal quantum number where if $n = 1$ then $l$ will be equal to $n - 1$ . for example if $n = 1$ then $l$ will be $0$ which means the subshell will be $1s$ as for azimuthal quantum number $0,1,2,3 \,and\, 4$ are designated as $s,p,d\,and\, f$ respectively.
Complete answer:
In this we need to assign such values to $n$ and $l$ that when we add the two, the sum is $7$
Here we cannot proceed further to $n = 3,l = 4$ as the value of $l$ should always be less than the value of $n$ so there are only four subshells possible in this case.
Hence the correct answer will be Option A.
Additional information:
The values which are used to describe the energy levels of atoms and molecules are known as the quantum numbers. There are four types of quantum numbers present which are the principle quantum number $(n)$-describes the energy level, the azimuthal quantum number $(l)$-describes the subshell , the magnetic quantum number $(m)$- describes the orbital of the subshell and the spin quantum number $(s)$ which describes the spin of the electron .
Note:
There is also an alternative method to solve the question:
We know that $(n + l) = 7$ $ - (i)$
Also, we know $l = n - 1$ $ - (ii)$
On substituting equation $(i)\& (ii)$ we get: -
$n + n - 1 = 7$
So, $2n = 7 + 1$
$
\Rightarrow 2n = 8 \\
\Rightarrow n = \dfrac{8}{2} \\
\Rightarrow n = 4
$
Hence by this method also we got the possible number of subshells that would be present for the condition $(n + l) = 7$
Also, to find the maximum number of electrons present in a subshell we use the formula: $2{n^2}$
Complete answer:
In this we need to assign such values to $n$ and $l$ that when we add the two, the sum is $7$
| $n$ | $l$ | $(n + l)$ | $Subshell$ |
| $ 7 \\ 6 \\ 5 \\ 4 $ | $ 0 \\ 1 \\ 2 \\ 3 $ | $ 7 \\ 7 \\ 7 \\ 7 $ | $ 7s \\ 6p \\ 5d \\ 4f $ |
Here we cannot proceed further to $n = 3,l = 4$ as the value of $l$ should always be less than the value of $n$ so there are only four subshells possible in this case.
Hence the correct answer will be Option A.
Additional information:
The values which are used to describe the energy levels of atoms and molecules are known as the quantum numbers. There are four types of quantum numbers present which are the principle quantum number $(n)$-describes the energy level, the azimuthal quantum number $(l)$-describes the subshell , the magnetic quantum number $(m)$- describes the orbital of the subshell and the spin quantum number $(s)$ which describes the spin of the electron .
Note:
There is also an alternative method to solve the question:
We know that $(n + l) = 7$ $ - (i)$
Also, we know $l = n - 1$ $ - (ii)$
On substituting equation $(i)\& (ii)$ we get: -
$n + n - 1 = 7$
So, $2n = 7 + 1$
$
\Rightarrow 2n = 8 \\
\Rightarrow n = \dfrac{8}{2} \\
\Rightarrow n = 4
$
Hence by this method also we got the possible number of subshells that would be present for the condition $(n + l) = 7$
Also, to find the maximum number of electrons present in a subshell we use the formula: $2{n^2}$
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Why is steel more elastic than rubber class 11 physics CBSE

What is boron A Nonmetal B Metal C Metalloid D All class 11 chemistry CBSE

What is Environment class 11 chemistry CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

How many squares are there in a chess board A 1296 class 11 maths CBSE

